Math Problem Statement

Parmis les énoncés suivants lesquels sont vrais ?

Solution

Let's analyze the statements in the image and determine which ones are true.

Statements:

  1. L'ensemble des combinaisons linéaires de deux vecteurs quelconques de R2\mathbb{R}^2 est R2\mathbb{R}^2
    Translation: The set of linear combinations of two arbitrary vectors in R2\mathbb{R}^2 is R2\mathbb{R}^2.
    Analysis: If you have two linearly independent vectors in R2\mathbb{R}^2, their linear combinations will span R2\mathbb{R}^2. Since this is true for any pair of linearly independent vectors in R2\mathbb{R}^2, this statement is true.

  2. L'ensemble {(1,2)}\{(1,2)\} engendre une droite passant par l'origine dans R2\mathbb{R}^2
    Translation: The set {(1,2)}\{(1,2)\} generates a line passing through the origin in R2\mathbb{R}^2.
    Analysis: A single vector generates a line through the origin in R2\mathbb{R}^2. This statement is true.

  3. Si dans un espace vectoriel VV, tout vecteur est combinaison linéaire de uu et u+vu+v et u+v+wu+v+w, alors les vecteurs {u,v,w}\{u, v, w\} engendrent VV
    Translation: If in a vector space VV, every vector is a linear combination of uu, u+vu+v, and u+v+wu+v+w, then the vectors {u,v,w}\{u, v, w\} span VV.
    Analysis: This statement is false. The fact that every vector is a combination of uu, u+vu+v, and u+v+wu+v+w does not necessarily imply that {u,v,w}\{u, v, w\} are linearly independent and span VV.

  4. L'ensemble {(1011),(0110)}\left\{ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\} engendre M2,2M_{2,2}
    Translation: The set {(1011),(0110)}\left\{ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\} spans M2,2M_{2,2}.
    Analysis: M2,2M_{2,2} refers to the space of 2x2 matrices, which has dimension 4. The set given contains only 2 matrices, so it cannot span the whole space M2,2M_{2,2}. This statement is false.

  5. L'ensemble {(1,0,1),(0,2,3)}\{(1,0,1), (0,2,3)\} engendre R3\mathbb{R}^3
    Translation: The set {(1,0,1),(0,2,3)}\{(1,0,1), (0,2,3)\} spans R3\mathbb{R}^3.
    Analysis: R3\mathbb{R}^3 is a 3-dimensional space, but the set only contains 2 vectors. Therefore, it cannot span R3\mathbb{R}^3. This statement is false.

Conclusion:

The correct answer is C. Seulement II et III.


Do you want more details or have any questions?

Related Questions:

  1. How do we determine if vectors span a space?
  2. What is the dimension of M2,2M_{2,2} and why can't two matrices span it?
  3. What is the definition of linear independence in vector spaces?
  4. How can we verify if a set of vectors in R3\mathbb{R}^3 spans the space?
  5. Why do linearly dependent vectors fail to span a vector space?

Tip:

Remember, the number of vectors needed to span a space must be equal to the dimension of that space, and they must be linearly independent.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Vector Spaces
Linear Combinations
Matrix Spaces

Formulas

Linear combination formula: c1*v1 + c2*v2 + ... + cn*vn = vector
Dimension of space: dimension = number of linearly independent vectors

Theorems

Spanning theorem
Linear independence
Vector space dimension theorem

Suitable Grade Level

Undergraduate level (or advanced high school)