Math Problem Statement
задача по линейной алгебре.даны векторы a1,v1,v2,v3.доказать что векторы v1,v2,v3 образуют базис и найти координаты вектора a в базисе v1,v2,v3 a=(-1;2;-3) v1=(1;2;1) v2=(0;1;-1) v3=(-1;2;1)
Solution
Решение задачи
Шаг 1. Проверим, образуют ли векторы (
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Vector Spaces
Basis and Coordinates
Formulas
Determinant of a matrix: det(A)
Coordinate transformation formula: a = c1*v1 + c2*v2 + c3*v3
Solving linear systems of equations
Theorems
Basis theorem: A set of n linearly independent vectors in an n-dimensional vector space forms a basis.
Linear independence: Determinant of a matrix formed by vectors is nonzero if they are linearly independent.
Suitable Grade Level
Undergraduate (Year 1-2)
Related Recommendation
Proof of Basis Formation and Coordinate Determination for Vectors a1, a2, a3
Proving a Basis and Determining Coordinates in R^3
Linear Independence and Basis of Vector Space V2: Coordinates in Basis {a, b}
Expressing Vector (-21, -22) as a Linear Combination of (4,4), (-2,1), (1,-1)
Prove Basis and Find Coordinates in Vector Space using Cramer's Rule