Math Problem Statement

Please round all answers to 2 decimal places.

Given the table below, use your calculator to find the Line of Best Fit

x 7.2 2.9 4.8 7.1 3.2 3.8 7.6 y 19 10 14.1 19.3 11.4 13.6 21

y

Solution

To find the Line of Best Fit, we will use the least squares method to determine the best linear relationship between the variables xx and yy. The formula for the line of best fit is y=mx+by = mx + b, where mm is the slope and bb is the y-intercept.

Given the data points: x:7.2,2.9,4.8,7.1,3.2,3.8,7.6x: 7.2, 2.9, 4.8, 7.1, 3.2, 3.8, 7.6 y:19,10,14.1,19.3,11.4,13.6,21y: 19, 10, 14.1, 19.3, 11.4, 13.6, 21

Let's calculate the necessary components step-by-step.

  1. Calculate the means of xx and yy: xˉ=7.2+2.9+4.8+7.1+3.2+3.8+7.67\bar{x} = \frac{7.2 + 2.9 + 4.8 + 7.1 + 3.2 + 3.8 + 7.6}{7} xˉ=36.67\bar{x} = \frac{36.6}{7} xˉ5.23\bar{x} \approx 5.23

yˉ=19+10+14.1+19.3+11.4+13.6+217\bar{y} = \frac{19 + 10 + 14.1 + 19.3 + 11.4 + 13.6 + 21}{7} yˉ=108.47\bar{y} = \frac{108.4}{7} yˉ15.49\bar{y} \approx 15.49

  1. Calculate the slope mm: m=(xixˉ)(yiyˉ)(xixˉ)2m = \frac{\sum{(x_i - \bar{x})(y_i - \bar{y})}}{\sum{(x_i - \bar{x})^2}}

Calculate each term: (xixˉ)(yiyˉ)(x_i - \bar{x})(y_i - \bar{y}) (7.25.23)(1915.49)=1.97×3.51=6.91(7.2 - 5.23)(19 - 15.49) = 1.97 \times 3.51 = 6.91 (2.95.23)(1015.49)=2.33×5.49=12.79(2.9 - 5.23)(10 - 15.49) = -2.33 \times -5.49 = 12.79 (4.85.23)(14.115.49)=0.43×1.39=0.60(4.8 - 5.23)(14.1 - 15.49) = -0.43 \times -1.39 = 0.60 (7.15.23)(19.315.49)=1.87×3.81=7.12(7.1 - 5.23)(19.3 - 15.49) = 1.87 \times 3.81 = 7.12 (3.25.23)(11.415.49)=2.03×4.09=8.30(3.2 - 5.23)(11.4 - 15.49) = -2.03 \times -4.09 = 8.30 (3.85.23)(13.615.49)=1.43×1.89=2.70(3.8 - 5.23)(13.6 - 15.49) = -1.43 \times -1.89 = 2.70 (7.65.23)(2115.49)=2.37×5.51=13.07(7.6 - 5.23)(21 - 15.49) = 2.37 \times 5.51 = 13.07

Sum of (xixˉ)(yiyˉ)(x_i - \bar{x})(y_i - \bar{y}): (xixˉ)(yiyˉ)=6.91+12.79+0.60+7.12+8.30+2.70+13.07\sum{(x_i - \bar{x})(y_i - \bar{y})} = 6.91 + 12.79 + 0.60 + 7.12 + 8.30 + 2.70 + 13.07 (xixˉ)(yiyˉ)=51.49\sum{(x_i - \bar{x})(y_i - \bar{y})} = 51.49

Calculate each term: (xixˉ)2(x_i - \bar{x})^2 (7.25.23)2=1.972=3.88(7.2 - 5.23)^2 = 1.97^2 = 3.88 (2.95.23)2=(2.33)2=5.43(2.9 - 5.23)^2 = (-2.33)^2 = 5.43 (4.85.23)2=(0.43)2=0.18(4.8 - 5.23)^2 = (-0.43)^2 = 0.18 (7.15.23)2=1.872=3.50(7.1 - 5.23)^2 = 1.87^2 = 3.50 (3.25.23)2=(2.03)2=4.12(3.2 - 5.23)^2 = (-2.03)^2 = 4.12 (3.85.23)2=(1.43)2=2.05(3.8 - 5.23)^2 = (-1.43)^2 = 2.05 (7.65.23)2=2.372=5.62(7.6 - 5.23)^2 = 2.37^2 = 5.62

Sum of (xixˉ)2(x_i - \bar{x})^2: (xixˉ)2=3.88+5.43+0.18+3.50+4.12+2.05+5.62\sum{(x_i - \bar{x})^2} = 3.88 + 5.43 + 0.18 + 3.50 + 4.12 + 2.05 + 5.62 (xixˉ)2=24.78\sum{(x_i - \bar{x})^2} = 24.78

m=51.4924.78m = \frac{51.49}{24.78} m2.08m \approx 2.08

  1. Calculate the y-intercept bb: b=yˉmxˉb = \bar{y} - m \bar{x} b=15.49(2.08×5.23)b = 15.49 - (2.08 \times 5.23) b=15.4910.88b = 15.49 - 10.88 b4.61b \approx 4.61

Therefore, the Line of Best Fit is: y=2.08x+4.61y = 2.08x + 4.61

Would you like more details or have any questions?

Here are five related questions:

  1. How would you calculate the correlation coefficient for this data?
  2. What is the significance of the slope in the line of best fit?
  3. How can we interpret the y-intercept in this context?
  4. What are residuals, and how can they be used to assess the fit of the line?
  5. How would adding more data points affect the line of best fit?

Tip: Always plot your data and the line of best fit to visually assess the accuracy and fit of the model.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Linear Regression
Least Squares Method

Formulas

Line of Best Fit: y = mx + b
Slope (m) formula: m = Σ((x_i - x̄)(y_i - ȳ)) / Σ((x_i - x̄)^2)
Y-intercept (b) formula: b = ȳ - m * x̄

Theorems

Least Squares Method

Suitable Grade Level

Grades 10-12