Math Problem Statement

Let f(x, y) = x^2 + y^2. Consider the line segment from (0, 0) to (2, 2) using two different parametrizations: C1 : x = t, y = t, 0 ≤ t ≤ 2 C2 : x = 2t, y = 2t, 0 ≤ t ≤ 1 1. Calculate the line integral ∫C1 f(x, y) ds. 2. Compare the following two line integrals ∫C1 f(x, y) ds and ∫C2 f(x, y) ds.

Solution

To solve the given problem, let’s go through each question step-by-step:

Given Data

We have a function: f(x,y)=x2+y2f(x, y) = x^2 + y^2

Two parametrizations are given for the line segment from (0,0)(0, 0) to (2,2)(2, 2):

  1. Curve C1C_1: x=tx = t, y=ty = t, where 0t20 \leq t \leq 2.
  2. Curve C2C_2: x=2tx = 2t, y=2ty = 2t, where 0t10 \leq t \leq 1.

We need to calculate the line integrals over C1C_1 and C2C_2, and then compare the results.

Step 1: Calculate the Line Integral over C1C_1

The line integral of f(x,y)f(x, y) along C1C_1 is: C1f(x,y)ds\int_{C_1} f(x, y) \, ds where ds=(dxdt)2+(dydt)2dtds = \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt.

1.1 Parametrize dsds for C1C_1

For C1C_1:

  • x=tx = t and y=ty = t.
  • Then, f(x,y)=t2+t2=2t2f(x, y) = t^2 + t^2 = 2t^2.

Calculate dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}:

  • dxdt=1\frac{dx}{dt} = 1 and dydt=1\frac{dy}{dt} = 1.

Thus: ds=(dxdt)2+(dydt)2dt=12+12dt=2dtds = \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt = \sqrt{1^2 + 1^2} \, dt = \sqrt{2} \, dt

1.2 Set Up and Evaluate the Integral for C1C_1

The integral becomes: C1f(x,y)ds=022t22dt=2202t2dt\int_{C_1} f(x, y) \, ds = \int_0^2 2t^2 \cdot \sqrt{2} \, dt = 2\sqrt{2} \int_0^2 t^2 \, dt

Now, evaluate 02t2dt\int_0^2 t^2 \, dt: 02t2dt=[t33]02=83\int_0^2 t^2 \, dt = \left[ \frac{t^3}{3} \right]_0^2 = \frac{8}{3}

Thus: C1f(x,y)ds=2283=1623\int_{C_1} f(x, y) \, ds = 2\sqrt{2} \cdot \frac{8}{3} = \frac{16\sqrt{2}}{3}

Step 2: Calculate the Line Integral over C2C_2

The line integral of f(x,y)f(x, y) along C2C_2 is: C2f(x,y)ds\int_{C_2} f(x, y) \, ds where ds=(dxdt)2+(dydt)2dtds = \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt.

2.1 Parametrize dsds for C2C_2

For C2C_2:

  • x=2tx = 2t and y=2ty = 2t.
  • Then, f(x,y)=(2t)2+(2t)2=4t2+4t2=8t2f(x, y) = (2t)^2 + (2t)^2 = 4t^2 + 4t^2 = 8t^2.

Calculate dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}:

  • dxdt=2\frac{dx}{dt} = 2 and dydt=2\frac{dy}{dt} = 2.

Thus: ds=(dxdt)2+(dydt)2dt=22+22dt=8dt=22dtds = \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt = \sqrt{2^2 + 2^2} \, dt = \sqrt{8} \, dt = 2\sqrt{2} \, dt

2.2 Set Up and Evaluate the Integral for C2C_2

The integral becomes: C2f(x,y)ds=018t222dt=16201t2dt\int_{C_2} f(x, y) \, ds = \int_0^1 8t^2 \cdot 2\sqrt{2} \, dt = 16\sqrt{2} \int_0^1 t^2 \, dt

Now, evaluate 01t2dt\int_0^1 t^2 \, dt: 01t2dt=[t33]01=13\int_0^1 t^2 \, dt = \left[ \frac{t^3}{3} \right]_0^1 = \frac{1}{3}

Thus: C2f(x,y)ds=16213=1623\int_{C_2} f(x, y) \, ds = 16\sqrt{2} \cdot \frac{1}{3} = \frac{16\sqrt{2}}{3}

Step 3: Comparison of Integrals

Both integrals yield the same result: C1f(x,y)ds=C2f(x,y)ds=1623\int_{C_1} f(x, y) \, ds = \int_{C_2} f(x, y) \, ds = \frac{16\sqrt{2}}{3}

Summary of Answers

  1. The line integral over C1C_1 is 1623\frac{16\sqrt{2}}{3}.
  2. The line integrals over C1C_1 and C2C_2 are equal, both giving 1623\frac{16\sqrt{2}}{3}.

Would you like further details on this solution or have additional questions?

Here are some related questions you might consider:

  1. How would the result change if we used a different function f(x,y)f(x, y)?
  2. What is the geometric interpretation of this line integral?
  3. How does the parametrization of a path affect the line integral result?
  4. Could we solve this integral using a different coordinate system?
  5. How would the calculation differ if we integrated over a different path from (0,0)(0, 0) to (2,2)(2, 2)?

Tip: When evaluating line integrals, ensure you correctly calculate dsds for each parametrization, as it directly affects the integral’s result.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Line integrals
Parametrization
Calculus

Formulas

ds = sqrt((dx/dt)^2 + (dy/dt)^2) dt
f(x, y) = x^2 + y^2

Theorems

Line integral of a scalar function over a curve

Suitable Grade Level

Undergraduate Calculus