Math Problem Statement

Integrate f left parenthesis x comma y comma z right parenthesisequalsx plus StartRoot y EndRoot minus z squared over the path from left parenthesis 0 comma 0 comma 0 right parenthesis to left parenthesis 2 comma 4 comma 2 right parenthesis given by Upper C 1​: r​(t)equalstiplust squared​j, 0 less than or equals t less than or equals 2 Upper C 2​: r​(t)equals2iplus4jplustk​, 0 less than or equals t less than or equals 2. give me an exact answer

Solution

To evaluate the line integral of f(x,y,z)=x+yz2f(x, y, z) = x + \sqrt{y} - z^2 along the path from (0,0,0)(0, 0, 0) to (2,4,2)(2, 4, 2), which is split into two segments C1C_1 and C2C_2, we proceed as follows:

Step 1: Evaluate the integral along C1C_1

The path C1C_1 is given by: r1(t)=ti+t2j,0t2.\vec{r}_1(t) = t\vec{i} + t^2\vec{j}, \quad 0 \leq t \leq 2. This gives:

  • x=tx = t
  • y=t2y = t^2
  • z=0z = 0 (since there is no kk-component in C1C_1).

The differential dr1d\vec{r}_1 is: dr1dt=ddt(ti+t2j)=i+2tj.\frac{d\vec{r}_1}{dt} = \frac{d}{dt}(t\vec{i} + t^2\vec{j}) = \vec{i} + 2t\vec{j}. Thus, dr1=(i+2tj)dtd\vec{r}_1 = (\vec{i} + 2t\vec{j}) \, dt.

Substituting into f(x,y,z)=x+yz2f(x, y, z) = x + \sqrt{y} - z^2: f(x, y, z) = t + \sqrt{t^2} - 0^2 = t + |t| = 2t \quad \text{(since t \geq 0)}.

The integral along C1C_1 is: C1f(x,y,z)dr1=02(2t)1+(2t)2dt.\int_{C_1} f(x, y, z) \, d\vec{r}_1 = \int_0^2 (2t) \cdot \sqrt{1 + (2t)^2} \, dt.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Line Integrals
Parametrized Paths
Path Integration

Formulas

f(x, y, z) = x + sqrt(y) - z^2
Path Integral formula: ∫C f(x, y, z) dr = ∫(f(x(t), y(t), z(t)) |dr/dt| dt)

Theorems

Fundamental Theorem for Line Integrals

Suitable Grade Level

Undergraduate Calculus (Calculus III level)