Math Problem Statement

Soit une fonction f définie sur ℝ \ {4/5} par f(x) = (-5x + 3)/(5x + 4). Calculer lim(x -> +∞) f(x) et en déduire lim(x -> +∞) f(f(x)).

Solution

Let's analyze this.

We are given the function:

f(x)=5x+35x+4f(x) = \frac{-5x + 3}{5x + 4}

1. First part: limx+f(x)\lim_{x \to +\infty} f(x)

As x+x \to +\infty, the highest powers of xx dominate both the numerator and the denominator. So, we can simplify:

f(x)=5x+35x+45x5x=1f(x) = \frac{-5x + 3}{5x + 4} \approx \frac{-5x}{5x} = -1

Thus,

limx+f(x)=1\lim_{x \to +\infty} f(x) = -1

2. Second part: limx+f(f(x))\lim_{x \to +\infty} f(f(x))

We already know limx+f(x)=1\lim_{x \to +\infty} f(x) = -1. Now, we calculate f(1)f(-1):

f(1)=5(1)+35(1)+4=5+35+4=81=8f(-1) = \frac{-5(-1) + 3}{5(-1) + 4} = \frac{5 + 3}{-5 + 4} = \frac{8}{-1} = -8

So,

limx+f(f(x))=8\lim_{x \to +\infty} f(f(x)) = -8


Do you want further details or have any questions about these steps?

Related questions:

  1. How does xx \to -\infty affect the limit of f(x)f(x)?
  2. What happens to f(x)f(x) when x=0x = 0?
  3. How do we check for horizontal asymptotes?
  4. What is the significance of excluding 45\frac{4}{5} from the domain?
  5. Could we explore the limit as xx \to -\infty for f(f(x))f(f(x))?

Tip:

When dealing with limits at infinity, simplify the function by focusing on the highest-degree terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Rational Functions
Asymptotic Behavior

Formulas

f(x) = (-5x + 3) / (5x + 4)
lim(x -> +∞) f(x)
lim(x -> +∞) f(f(x))

Theorems

Limits of rational functions
Dominance of highest-degree terms

Suitable Grade Level

Grades 11-12 (Pre-university level)