Math Problem Statement

lim x to inf (xln(1-(5/x)+(6/(x^2)) found the limit

Solution

We need to evaluate the limit:

limxxln(15x+6x2)\lim_{x \to \infty} x \ln \left( 1 - \frac{5}{x} + \frac{6}{x^2} \right)

Step 1: Use Log Approximation

For small yy, we use the approximation:

ln(1+y)yfor y0\ln(1 + y) \approx y \quad \text{for } y \approx 0

Setting y=5x+6x2y = -\frac{5}{x} + \frac{6}{x^2}, we assume yy is small for large xx, so we approximate:

ln(15x+6x2)5x+6x2\ln \left( 1 - \frac{5}{x} + \frac{6}{x^2} \right) \approx -\frac{5}{x} + \frac{6}{x^2}

Step 2: Multiply by xx

xln(15x+6x2)x(5x+6x2)x \ln \left( 1 - \frac{5}{x} + \frac{6}{x^2} \right) \approx x \left( -\frac{5}{x} + \frac{6}{x^2} \right)

=x(5x)+x(6x2)= x \cdot \left( -\frac{5}{x} \right) + x \cdot \left( \frac{6}{x^2} \right)

=5+6x= -5 + \frac{6}{x}

Step 3: Evaluate the Limit

limx(5+6x)=5+0=5\lim_{x \to \infty} \left( -5 + \frac{6}{x} \right) = -5 + 0 = -5

Conclusion

Thus, the given limit evaluates to:

limxxln(15x+6x2)=5\lim_{x \to \infty} x \ln \left( 1 - \frac{5}{x} + \frac{6}{x^2} \right) = -5

Would you like a more detailed breakdown or an alternative approach?

Here are five related problems for practice:

  1. limxxln(1+ax)\lim_{x \to \infty} x \ln(1 + \frac{a}{x}) where aa is a constant.
  2. limxxln(1bx+cx2)\lim_{x \to \infty} x \ln(1 - \frac{b}{x} + \frac{c}{x^2}) for arbitrary constants b,cb, c.
  3. limxxln(1+1x2)\lim_{x \to \infty} x \ln(1 + \frac{1}{x^2}).
  4. limxx2ln(11x)\lim_{x \to \infty} x^2 \ln(1 - \frac{1}{x}).
  5. limxxln(1kx3)\lim_{x \to \infty} x \ln(1 - \frac{k}{x^3}) where kk is a constant.

Tip:

For limits involving logarithms and small perturbations, always consider the first-order approximation:
ln(1+y)y for small y\ln(1 + y) \approx y \text{ for small } y
This simplifies calculations significantly! 🚀

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Logarithmic Approximation
Asymptotic Analysis

Formulas

lim (x → ∞) x ln(1 + y) ≈ x * y for small y
ln(1 + y) ≈ y for small y

Theorems

Logarithm Approximation for Small Values

Suitable Grade Level

Undergraduate Calculus