Math Problem Statement

Calculate \( \lim_{x \to +\infty} \sqrt{x^2 + x} - x \).

Solution

The problem is to calculate:

limx+x2+xx.\lim_{x \to +\infty} \sqrt{x^2 + x} - x.

Solution:

  1. Factor x2x^2 inside the square root: Inside the square root, factor out x2x^2: x2+x=x2(1+1x)=x1+1x,\sqrt{x^2 + x} = \sqrt{x^2(1 + \frac{1}{x})} = x\sqrt{1 + \frac{1}{x}}, since x>0x > 0 as x+x \to +\infty.

  2. Rewrite the expression: Substitute x1+1xx\sqrt{1 + \frac{1}{x}} into the limit: limx+x2+xx=limx+x1+1xx.\lim_{x \to +\infty} \sqrt{x^2 + x} - x = \lim_{x \to +\infty} x\sqrt{1 + \frac{1}{x}} - x.

  3. Factor xx out of the expression: Factor xx from the terms: x1+1xx=x(1+1x1).x\sqrt{1 + \frac{1}{x}} - x = x\left(\sqrt{1 + \frac{1}{x}} - 1\right).

  4. Simplify 1+1x1\sqrt{1 + \frac{1}{x}} - 1: Use the approximation 1+u1+u2\sqrt{1 + u} \approx 1 + \frac{u}{2} for small uu (here u=1xu = \frac{1}{x}): 1+1x1+12x.\sqrt{1 + \frac{1}{x}} \approx 1 + \frac{1}{2x}. So: 1+1x112x.\sqrt{1 + \frac{1}{x}} - 1 \approx \frac{1}{2x}.

  5. Substitute the approximation back: Substitute 1+1x112x\sqrt{1 + \frac{1}{x}} - 1 \approx \frac{1}{2x} into the expression: x(1+1x1)x12x=12.x\left(\sqrt{1 + \frac{1}{x}} - 1\right) \approx x \cdot \frac{1}{2x} = \frac{1}{2}.

  6. Conclusion: The limit is: limx+x2+xx=12.\lim_{x \to +\infty} \sqrt{x^2 + x} - x = \frac{1}{2}.

Final Answer:

12\boxed{\frac{1}{2}}

Let me know if you'd like further clarifications! Here are five related questions to deepen your understanding:


Related Questions:

  1. How would the limit change if the expression were x2+2xx\sqrt{x^2 + 2x} - x?
  2. What is the behavior of x2+x+x\sqrt{x^2 + x} + x as x+x \to +\infty?
  3. How can you rigorously justify the approximation 1+u1+u2\sqrt{1 + u} \approx 1 + \frac{u}{2} using a binomial expansion?
  4. What happens if xx approaches -\infty instead of ++\infty?
  5. Can the same method be used for x2+axbx\sqrt{x^2 + ax} - bx for constants aa and bb? Why or why not?

Tip:

When simplifying expressions with square roots, factoring out the dominant term (e.g., x2x^2) is a reliable strategy to isolate smaller terms and approximate the behavior of the function at infinity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Square Root Simplification
Asymptotic Behavior
Approximation Techniques

Formulas

Limit: \( \lim_{x \to +\infty} f(x) \)
Square Root Simplification: \( \sqrt{a^2 + b} \approx a + \frac{b}{2a} \) when \( b \ll a^2 \)
Binomial Approximation: \( (1 + u)^n \approx 1 + nu \) for small \( u \)

Theorems

Limit Laws
Binomial Expansion Approximation

Suitable Grade Level

Grades 11-12