Math Problem Statement

вычислить пределы

вычислить пределы

Solution

To solve the given limit:

limx4x4+3x2+4x+52x4+3x2+4\lim_{x \to \infty} \frac{4x^4 + 3x^2 + 4x + 5}{2x^4 + 3x^2 + 4}

Step-by-step solution:

  1. Identify the highest degree of xx:

    • The highest degree of xx in the numerator is x4x^4.
    • The highest degree of xx in the denominator is also x4x^4.
  2. Divide both the numerator and denominator by x4x^4: limx4x4+3x2+4x+5x42x4+3x2+4x4\lim_{x \to \infty} \frac{\frac{4x^4 + 3x^2 + 4x + 5}{x^4}}{\frac{2x^4 + 3x^2 + 4}{x^4}}

    Simplify each term:

    • Numerator: 4x4x4+3x2x4+4xx4+5x4=4+3x2+4x3+5x4\frac{4x^4}{x^4} + \frac{3x^2}{x^4} + \frac{4x}{x^4} + \frac{5}{x^4} = 4 + \frac{3}{x^2} + \frac{4}{x^3} + \frac{5}{x^4}
    • Denominator: 2x4x4+3x2x4+4x4=2+3x2+4x4\frac{2x^4}{x^4} + \frac{3x^2}{x^4} + \frac{4}{x^4} = 2 + \frac{3}{x^2} + \frac{4}{x^4}
  3. Substitute the simplified forms into the limit: limx4+3x2+4x3+5x42+3x2+4x4\lim_{x \to \infty} \frac{4 + \frac{3}{x^2} + \frac{4}{x^3} + \frac{5}{x^4}}{2 + \frac{3}{x^2} + \frac{4}{x^4}}

  4. Evaluate the limit as xx \to \infty:

    • As xx \to \infty, all terms containing xx in the denominator (3x2,4x3,5x4\frac{3}{x^2}, \frac{4}{x^3}, \frac{5}{x^4}) approach 00.
    • The numerator approaches 44, and the denominator approaches 22.

    Therefore: limx4+3x2+4x3+5x42+3x2+4x4=42=2\lim_{x \to \infty} \frac{4 + \frac{3}{x^2} + \frac{4}{x^3} + \frac{5}{x^4}}{2 + \frac{3}{x^2} + \frac{4}{x^4}} = \frac{4}{2} = 2

Final Answer:

limx4x4+3x2+4x+52x4+3x2+4=2\lim_{x \to \infty} \frac{4x^4 + 3x^2 + 4x + 5}{2x^4 + 3x^2 + 4} = 2

Do you want further details or have additional questions?

Related Questions:

  1. How does the degree of a polynomial affect the behavior of a rational function at infinity?
  2. Can this method be applied to limits where the degrees of the numerator and denominator differ?
  3. What happens if the degree of the denominator is higher than the numerator?
  4. How do asymptotes relate to limits at infinity for rational functions?
  5. What if the terms in the numerator and denominator had coefficients with opposite signs?

Tip:

For limits of rational functions as xx \to \infty, always compare the highest degree terms in the numerator and denominator.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Rational Functions
Polynomial Division

Formulas

lim_{x → ∞} [P(x)/Q(x)] = Leading coefficient of P(x) / Leading coefficient of Q(x), if degrees of P(x) and Q(x) are equal

Theorems

Limit theorem for rational functions at infinity
Polynomial degree comparison

Suitable Grade Level

Grades 11-12 or Early College