Math Problem Statement
\lim _{x\to :2}\left(\frac{\sqrt{x-2}+x^2-3x+2}{\sqrt{x^2-4}}\right)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Limits
Indeterminate Forms
Square Roots
Factoring
Formulas
L'Hôpital's Rule
Square Root Simplification
Quadratic Factoring
Theorems
L'Hôpital's Rule
Limit Definition
Suitable Grade Level
Undergraduate Calculus
Related Recommendation
Evaluate Limit: lim_{x \to 1} (x - sqrt{2 - x^2}) / (2x - sqrt{2 + 2x^2})
Evaluate Limit using L'Hopital's Rule: sqrt(2 - x) / (3 - sqrt(4x + 5)) as x approaches 1
Evaluate Limit Without L'Hôpital's Rule: \(\lim_{x \to 1} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}}\)
Limit of \( \lim_{x \to 0} \frac{\sqrt{1 + \tan{x}} - \sqrt{1 + \sin{x}}}{x^3} \) using L'Hopital's Rule
Evaluate Limit of \( \frac{\sqrt{2x + 3} - \sqrt{2x^2 - 1}}{x + 1} \) as \( x \to -1 \)