Math Problem Statement

\lim _{x\to 0}\frac{1}{x}\int _0^x:\left(1-tan2t\right)^{\frac{1}{t}}dt:

Solution

We aim to compute the limit:

limx01x0x(1tan(2t))1tdt.\lim_{x \to 0} \frac{1}{x} \int_0^x \left(1 - \tan(2t)\right)^{\frac{1}{t}} \, dt.


Step 1: Analyze the expression inside the integral

The term inside the integral is (1tan(2t))1t\left(1 - \tan(2t)\right)^{\frac{1}{t}}. As t0t \to 0:

  • tan(2t)2t\tan(2t) \to 2t (using the small-angle approximation for tan(x)\tan(x)).
  • Thus, 1tan(2t)12t1 - \tan(2t) \to 1 - 2t.

Now, approximate (12t)1t\left(1 - 2t\right)^{\frac{1}{t}} using logarithmic expansion: ln((12t)1t)=1tln(12t).\ln\left(\left(1 - 2t\right)^{\frac{1}{t}}\right) = \frac{1}{t} \ln(1 - 2t). Expand ln(12t)\ln(1 - 2t) for small tt: ln(12t)2t.\ln(1 - 2t) \approx -2t. So: 1tln(12t)2.\frac{1}{t} \ln(1 - 2t) \approx -2. Exponentiating: (1tan(2t))1te2.\left(1 - \tan(2t)\right)^{\frac{1}{t}} \approx e^{-2}.


Step 2: Approximate the integral

Substitute the approximation (1tan(2t))1te2\left(1 - \tan(2t)\right)^{\frac{1}{t}} \approx e^{-2} into the integral: 0x(1tan(2t))1tdt0xe2dt.\int_0^x \left(1 - \tan(2t)\right)^{\frac{1}{t}} \, dt \approx \int_0^x e^{-2} \, dt. Since e2e^{-2} is constant, this becomes: 0xe2dt=e20x1dt=e2x.\int_0^x e^{-2} \, dt = e^{-2} \int_0^x 1 \, dt = e^{-2} \cdot x.


Step 3: Evaluate the limit

Now substitute the result of the integral into the limit: limx01x0x(1tan(2t))1tdtlimx01xe2x.\lim_{x \to 0} \frac{1}{x} \int_0^x \left(1 - \tan(2t)\right)^{\frac{1}{t}} \, dt \approx \lim_{x \to 0} \frac{1}{x} \cdot e^{-2} x. Simplify: limx0e2=e2.\lim_{x \to 0} e^{-2} = e^{-2}.


Final Answer:

e2\boxed{e^{-2}}

Would you like a more detailed breakdown or additional questions related to this problem? Here are some related questions:


  1. How is the small-angle approximation for tan(x)\tan(x) derived?
  2. What is the Taylor expansion of ln(1x)\ln(1 - x), and how is it used here?
  3. How do we rigorously justify the substitution of an approximate function into a definite integral?
  4. Could this problem be solved using numerical methods or software tools? If so, how?
  5. How does this limit relate to exponential growth or decay in applied contexts?

Tip: When solving integrals with limits, carefully analyze the behavior of the integrand near the limits of integration to identify dominant terms or patterns.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Core Knowledge Points
Definite Integrals
Exponentials
Approximation

Formulas

-

Theorems

-

Suitable Grade Level

Undergraduate, Calculus I or II