Math Problem Statement

Given that θ\thetaθ is a small angle measured in radians, approximate the function sin⁡3(θ)⋅sin⁡(2⋅θ)−3sin⁡(2⋅θ)⋅sin⁡2(4⋅θ)+sin⁡(12⋅θ)+θ⋅sin⁡(θ)sin⁡(2⋅θ),\frac{\sin^3(\theta)\cdot\sin(2\cdot\theta)-3\sin(2\cdot\theta)\cdot\sin^2(4\cdot\theta)+\sin\left(\frac{1}{2}\cdot\theta\right)+\theta\cdot\sin(\theta)}{\sin(2\cdot\theta)},sin(2⋅θ)sin3(θ)⋅sin(2⋅θ)−3sin(2⋅θ)⋅sin2(4⋅θ)+sin(21​⋅θ)+θ⋅sin(θ)​, expressing your answer in terms of θ\thetaθ in a simplified form.

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Small Angle Approximation
Algebra

Formulas

sin(θ) ≈ θ for small θ
sin(2θ) ≈ 2θ for small θ
sin(4θ) ≈ 4θ for small θ
sin(1/2θ) ≈ 1/2θ for small θ

Theorems

Small Angle Approximation

Suitable Grade Level

University Level - Calculus and Trigonometry