Math Problem Statement

Given that θ\thetaθ is a small angle measured in radians, approximate the function sin⁡3(θ)⋅sin⁡(2⋅θ)−3sin⁡(2⋅θ)⋅sin⁡2(4⋅θ)+sin⁡(12⋅θ)+θ⋅sin⁡(θ)sin⁡(2⋅θ),\frac{\sin^3(\theta)\cdot\sin(2\cdot\theta)-3\sin(2\cdot\theta)\cdot\sin^2(4\cdot\theta)+\sin\left(\frac{1}{2}\cdot\theta\right)+\theta\cdot\sin(\theta)}{\sin(2\cdot\theta)},sin(2⋅θ)sin3(θ)⋅sin(2⋅θ)−3sin(2⋅θ)⋅sin2(4⋅θ)+sin(21​⋅θ)+θ⋅sin(θ)​, expressing your answer in terms of θ\thetaθ in a simplified form.

Solution

We are asked to approximate and simplify the following expression for small θ\theta, which is measured in radians:

sin3(θ)sin(2θ)3sin(2θ)sin2(4θ)+sin(12θ)+θsin(θ)sin(2θ)\frac{\sin^3(\theta)\cdot\sin(2\cdot\theta)-3\sin(2\cdot\theta)\cdot\sin^2(4\cdot\theta)+\sin\left(\frac{1}{2}\cdot\theta\right)+\theta\cdot\sin(\theta)}{\sin(2\cdot\theta)}

Step 1: Small Angle Approximation

For small θ\theta, the following approximations hold:

  • sin(θ)θ\sin(\theta) \approx \theta
  • sin(2θ)2θ\sin(2\theta) \approx 2\theta
  • sin(4θ)4θ\sin(4\theta) \approx 4\theta
  • sin(12θ)12θ\sin\left(\frac{1}{2}\theta\right) \approx \frac{1}{2}\theta

Step 2: Approximate Each Term

1. sin3(θ)sin(2θ)\sin^3(\theta) \cdot \sin(2\theta)

Using sin(θ)θ\sin(\theta) \approx \theta and sin(2θ)2θ\sin(2\theta) \approx 2\theta: sin3(θ)sin(2θ)θ32θ=2θ4\sin^3(\theta) \cdot \sin(2\theta) \approx \theta^3 \cdot 2\theta = 2\theta^4

2. 3sin(2θ)sin2(4θ)3\sin(2\theta) \cdot \sin^2(4\theta)

Using sin(2θ)2θ\sin(2\theta) \approx 2\theta and sin(4θ)4θ\sin(4\theta) \approx 4\theta: sin2(4θ)(4θ)2=16θ2\sin^2(4\theta) \approx (4\theta)^2 = 16\theta^2 So: 3sin(2θ)sin2(4θ)32θ16θ2=96θ33\sin(2\theta) \cdot \sin^2(4\theta) \approx 3 \cdot 2\theta \cdot 16\theta^2 = 96\theta^3

3. sin(12θ)\sin\left(\frac{1}{2}\theta\right)

Using sin(12θ)12θ\sin\left(\frac{1}{2}\theta\right) \approx \frac{1}{2}\theta: sin(12θ)12θ\sin\left(\frac{1}{2}\theta\right) \approx \frac{1}{2}\theta

4. θsin(θ)\theta \cdot \sin(\theta)

Using sin(θ)θ\sin(\theta) \approx \theta: θsin(θ)θθ=θ2\theta \cdot \sin(\theta) \approx \theta \cdot \theta = \theta^2

Step 3: Plug into the Expression

Substituting all the approximations into the original expression:

2θ496θ3+12θ+θ22θ\frac{2\theta^4 - 96\theta^3 + \frac{1}{2}\theta + \theta^2}{2\theta}

Step 4: Simplify the Expression

First, factor out θ\theta from the numerator:

θ(2θ396θ2+12+θ)2θ\frac{\theta(2\theta^3 - 96\theta^2 + \frac{1}{2} + \theta)}{2\theta}

Cancel θ\theta from both the numerator and denominator (assuming θ0\theta \neq 0):

2θ396θ2+12+θ2\frac{2\theta^3 - 96\theta^2 + \frac{1}{2} + \theta}{2}

This simplifies to:

12(2θ396θ2+θ+12)\frac{1}{2}(2\theta^3 - 96\theta^2 + \theta + \frac{1}{2})

Step 5: Final Expression

The simplified expression is:

θ348θ2+12θ+14\theta^3 - 48\theta^2 + \frac{1}{2}\theta + \frac{1}{4}

Thus, for small θ\theta, the expression approximates to:

θ348θ2+12θ+14\boxed{\theta^3 - 48\theta^2 + \frac{1}{2}\theta + \frac{1}{4}}

Do you want details or have any questions?

5 Related Questions:

  1. How can small-angle approximations be applied to more complex trigonometric functions?
  2. What other common approximations are useful for simplifying trigonometric functions?
  3. How do higher-order terms affect the accuracy of small-angle approximations?
  4. Can this method be applied for larger angles, and what changes if it does?
  5. How does this approximation compare to numerical solutions for small θ\theta?

Tip:

When using small-angle approximations, always ensure the angle is sufficiently small (typically less than 0.1 radians) to maintain accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Small Angle Approximation
Algebra

Formulas

sin(θ) ≈ θ for small θ
sin(2θ) ≈ 2θ for small θ
sin(4θ) ≈ 4θ for small θ
sin(1/2θ) ≈ 1/2θ for small θ

Theorems

Small Angle Approximation

Suitable Grade Level

University Level - Calculus and Trigonometry