Solution
We are asked to find the value of the limit:
limh→0h3+3hf(1−h)−f(1)
where f(x)=3x10−7x+5x−21x3+3x2−7.
Step 1: Simplify f(x)
First, simplify the function f(x):
f(x)=3x10−7x+5x−21x3+3x2−7
f(x)=3x10−2x−21x3+3x2−7
Step 2: Calculate f(1−h) and f(1)
Next, substitute 1−h into the function to find f(1−h):
f(1−h)=3(1−h)10−2(1−h)−21(1−h)3+3(1−h)2−7
And for f(1):
f(1)=3(1)10−2(1)−21(1)3+3(1)2−7
f(1)=3(1)−2(1)−21(1)+3(1)−7
f(1)=3−2−21+3−7=−24
Step 3: Expand f(1−h) for small h
Now, expand f(1−h) using the binomial theorem:
(1−h)10=1−10h+245h2−…
(1−h)3=1−3h+3h2−h3
(1−h)2=1−2h+h2
Substituting these expansions into f(1−h):
[
f(1-h