Math Problem Statement

If f(x) = 3x10 -7x + 5x-21x³ +3x²-7, then the value of limh->0 ((f(1-h)-f(1))/(h³+3h))

Solution

We are asked to find the value of the limit:

limh0f(1h)f(1)h3+3h\lim_{h \to 0} \frac{f(1-h) - f(1)}{h^3 + 3h}

where f(x)=3x107x+5x21x3+3x27f(x) = 3x^{10} - 7x + 5x - 21x^3 + 3x^2 - 7.

Step 1: Simplify f(x)f(x)

First, simplify the function f(x)f(x):

f(x)=3x107x+5x21x3+3x27f(x) = 3x^{10} - 7x + 5x - 21x^3 + 3x^2 - 7 f(x)=3x102x21x3+3x27f(x) = 3x^{10} - 2x - 21x^3 + 3x^2 - 7

Step 2: Calculate f(1h)f(1-h) and f(1)f(1)

Next, substitute 1h1-h into the function to find f(1h)f(1-h):

f(1h)=3(1h)102(1h)21(1h)3+3(1h)27f(1-h) = 3(1-h)^{10} - 2(1-h) - 21(1-h)^3 + 3(1-h)^2 - 7

And for f(1)f(1):

f(1)=3(1)102(1)21(1)3+3(1)27f(1) = 3(1)^{10} - 2(1) - 21(1)^3 + 3(1)^2 - 7 f(1)=3(1)2(1)21(1)+3(1)7f(1) = 3(1) - 2(1) - 21(1) + 3(1) - 7 f(1)=3221+37=24f(1) = 3 - 2 - 21 + 3 - 7 = -24

Step 3: Expand f(1h)f(1-h) for small hh

Now, expand f(1h)f(1-h) using the binomial theorem:

(1h)10=110h+45h22(1-h)^{10} = 1 - 10h + \frac{45h^2}{2} - \dots (1h)3=13h+3h2h3(1-h)^3 = 1 - 3h + 3h^2 - h^3 (1h)2=12h+h2(1-h)^2 = 1 - 2h + h^2

Substituting these expansions into f(1h)f(1-h):

[ f(1-h

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Differentiation
Binomial Theorem

Formulas

Binomial theorem

Theorems

-

Suitable Grade Level

Undergraduate Level