Math Problem Statement

If f(x) = 3x10 -7x + 5x-21x³ +3x²-7, then the value of limh->0 ((f(1-h)-f(1))/(h³+3h))

Solution

We are asked to find the value of the following limit:

limh0f(1h)f(1)h3+3h\lim_{h \to 0} \frac{f(1-h) - f(1)}{h^3 + 3h}

where the function f(x)=3x107x+5x21x3+3x27f(x) = 3x^{10} - 7x + 5x - 21x^3 + 3x^2 - 7.

Step 1: Simplify f(x)f(x)

First, let's simplify the expression for f(x)f(x):

f(x)=3x107x+5x21x3+3x27f(x) = 3x^{10} - 7x + 5x - 21x^3 + 3x^2 - 7 f(x)=3x102x21x3+3x27f(x) = 3x^{10} - 2x - 21x^3 + 3x^2 - 7

Step 2: Calculate f(1h)f(1-h) and f(1)f(1)

Next, let's evaluate f(1)f(1) and f(1h)f(1-h):

f(1)=3(1)102(1)21(1)3+3(1)27f(1) = 3(1)^{10} - 2(1) - 21(1)^3 + 3(1)^2 - 7 f(1)=3221+37=24f(1) = 3 - 2 - 21 + 3 - 7 = -24

Now, we need to expand f(1h)f(1-h). For small hh, use the binomial expansion to approximate:

f(1h)=3(1h)102(1h)21(1h)3+3(1h)27f(1-h) = 3(1-h)^{10} - 2(1-h) - 21(1-h)^3 + 3(1-h)^2 - 7

Expanding each term:

(1-h)^{10} \approx 1 - 10h + \frac{45h^2}{2} \quad \text{(we only consider terms up to h^2)} (1h)313h+3h2(1-h)^3 \approx 1 - 3h + 3h^2 (1h)212h+h2(1-h)^2 \approx 1 - 2h + h^2

Substituting these into f(1h)f(1-h):

f(1h)3(110h+45h22)2(1h)21(13h+3h2)+3(12h+h2)7f(1-h) \approx 3(1 - 10h + \frac{45h^2}{2}) - 2(1 - h) - 21(1 - 3h + 3h^2) + 3(1 - 2h + h^2) - 7 =330h+135h222+2h21+63h63h2+36h+3h27= 3 - 30h + \frac{135h^2}{2} - 2 + 2h - 21 + 63h - 63h^2 + 3 - 6h + 3h^2 - 7 =24+29h+(135h2260h2)= -24 + 29h + \left(\frac{135h^2}{2} - 60h^2\right) =24+29h+15h22= -24 + 29h + \frac{15h^2}{2}

Step 3: Compute f(1h)f(1)f(1-h) - f(1)

The difference f(1h)f(1)f(1-h) - f(1) is:

f(1h)f(1)=(24+29h+15h22)(24)f(1-h) - f(1) = \left(-24 + 29h + \frac{15h^2}{2}\right) - (-24) =29h+15h22= 29h + \frac{15h^2}{2}

Step 4: Find the limit

Substitute into the limit expression:

limh029h+15h22h3+3h\lim_{h \to 0} \frac{29h + \frac{15h^2}{2}}{h^3 + 3h}

Factor hh from both the numerator and denominator:

limh0h(29+15h2)h(h2+3)\lim_{h \to 0} \frac{h \left(29 + \frac{15h}{2}\right)}{h(h^2 + 3)} =limh029+15h2h2+3= \lim_{h \to 0} \frac{29 + \frac{15h}{2}}{h^2 + 3}

As hh approaches 0:

limh029+00+3=293\lim_{h \to 0} \frac{29 + 0}{0 + 3} = \frac{29}{3}

Thus, the value of the limit is:

293\boxed{\frac{29}{3}}

Would you like more details or have any questions?

Here are 5 related questions:

  1. How do you use the binomial expansion to approximate functions?
  2. What is the significance of using limits to find the slope of a tangent line?
  3. How do higher-order terms affect the behavior of a function as hh approaches zero?
  4. When can L'Hôpital's Rule be applied to evaluate limits?
  5. What are some common techniques for simplifying complex functions before taking limits?

Tip: When evaluating limits involving polynomials, it’s often helpful to expand terms using binomial expansion, especially when hh is small.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Polynomial Functions
Binomial Expansion

Formulas

-

Theorems

-

Suitable Grade Level

College