Math Problem Statement

Find least square solution of the following system of equations:

⎧⎩⎨⎪⎪⎪⎪x1−x2=1x1−2x2−x3=02x1+2x3=1x2+x3=1

Solution

We will solve the least squares solution of the following system of equations:

1) \quad & x_1 - x_2 = 1 \\ 2) \quad & x_1 - 2x_2 - x_3 = 0 \\ 3) \quad & 2x_1 + 2x_3 = 1 \\ 4) \quad & x_2 + x_3 = 1 \end{aligned}$$ ### Step 1: Write in Matrix Form We can write the system of equations in the matrix form $$A \mathbf{x} = \mathbf{b}$$, where: $$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -2 & -1 \\ 2 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$ ### Step 2: Least Squares Solution Formula The least squares solution minimizes the squared error between the system and the solution. It is given by: $$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$$ ### Step 3: Compute $$A^T A$$ and $$A^T \mathbf{b}$$ First, compute the transpose of $$A$$, $$A^T$$: $$A^T = \begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & -2 & 0 & 1 \\ 0 & -1 & 2 & 1 \end{pmatrix}$$ Now, multiply $$A^T A$$: $$A^T A = \begin{pmatrix} 6 & -3 & 4 \\ -3 & 6 & 1 \\ 4 & 1 & 6 \end{pmatrix}$$ Next, compute $$A^T \mathbf{b}$$: $$A^T \mathbf{b} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$$ ### Step 4: Solve for $$\mathbf{x}$$ Now, we solve the normal equation: $$(A^T A) \mathbf{x} = A^T \mathbf{b}$$ We need the inverse of $$A^T A$$. Using standard matrix methods or software, we find: $$(A^T A)^{-1} = \begin{pmatrix} 0.3 & 0.2 & -0.2 \\ 0.2 & 0.3 & 0 \\ -0.2 & 0 & 0.3 \end{pmatrix}$$ Now, multiply $$(A^T A)^{-1}$$ with $$A^T \mathbf{b}$$: $$\mathbf{x} = \begin{pmatrix} 0.3 & 0.2 & -0.2 \\ 0.2 & 0.3 & 0 \\ -0.2 & 0 & 0.3 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$ ### Final Answer The least squares solution is: $$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$ --- Do you need further clarifications? ### Related Questions 1. What are normal equations in least squares solutions? 2. How do we compute matrix inverses efficiently? 3. What if the system of equations has an exact solution? 4. How do least squares solutions relate to over-determined systems? 5. Can we solve least squares problems using singular value decomposition (SVD)? **Tip:** Least squares solutions are essential for handling inconsistent systems, especially when there are more equations than unknowns.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Least Squares Method
Overdetermined Systems

Formulas

Least squares solution formula: x = (A^T A)^{-1} A^T b
Matrix multiplication
Matrix inverse

Theorems

Normal Equations in Least Squares
Matrix Inversion

Suitable Grade Level

Grades 11-12, College