Math Problem Statement

Easy way to learn table value of sin cost ten value

Solution

Learning the table values of sin\sin, cos\cos, and tan\tan for common angles (0°, 30°, 45°, 60°, and 90°) is straightforward if you follow these simple steps:

1. Understand the key angles and the table structure:

You will memorize the values for these angles: 0,30,45,60,900^\circ, 30^\circ, 45^\circ, 60^\circ, 90^\circ.

2. Sine values:

To remember sin\sin values:

  • Start with 0.
  • Use the sequence: sin0=0,sin30=12,sin45=22,sin60=32,sin90=1\sin 0^\circ = 0, \sin 30^\circ = \frac{1}{2}, \sin 45^\circ = \frac{\sqrt{2}}{2}, \sin 60^\circ = \frac{\sqrt{3}}{2}, \sin 90^\circ = 1.
  • Note the pattern: sinθ\sin \theta increases gradually from 0 to 1.

3. Cosine values:

To derive cos\cos values:

  • Use the reverse of sin\sin values: cosθ=sin(90θ)\cos \theta = \sin (90^\circ - \theta).
  • Values are: cos0=1,cos30=32,cos45=22,cos60=12,cos90=0\cos 0^\circ = 1, \cos 30^\circ = \frac{\sqrt{3}}{2}, \cos 45^\circ = \frac{\sqrt{2}}{2}, \cos 60^\circ = \frac{1}{2}, \cos 90^\circ = 0.

4. Tangent values:

tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta}.

  • Values:
    • tan0=0\tan 0^\circ = 0,
    • tan30=13\tan 30^\circ = \frac{1}{\sqrt{3}},
    • tan45=1\tan 45^\circ = 1,
    • tan60=3\tan 60^\circ = \sqrt{3},
    • tan90=undefined\tan 90^\circ = \text{undefined}.

5. Memorize using a table:

Here’s the quick-reference table for these values:

θ\thetasinθ\sin \thetacosθ\cos \thetatanθ\tan \theta
00^\circ001100
3030^\circ12\frac{1}{2}32\frac{\sqrt{3}}{2}13\frac{1}{\sqrt{3}}
4545^\circ22\frac{\sqrt{2}}{2}22\frac{\sqrt{2}}{2}11
6060^\circ32\frac{\sqrt{3}}{2}12\frac{1}{2}3\sqrt{3}
9090^\circ1100undefined\text{undefined}

6. Tips to practice:

  • Write this table repeatedly.
  • Solve problems using these values.
  • Use mnemonic techniques to remember patterns.

Would you like examples or additional exercises to reinforce this concept?


Five questions to explore further:

  1. Why is tan90\tan 90^\circ undefined, and how does it relate to its graph?
  2. How do you use these values to find trigonometric functions of larger angles?
  3. What are the reciprocal trigonometric functions, and how do they relate to sin\sin, cos\cos, and tan\tan?
  4. How can you derive these values geometrically using a unit circle?
  5. Can you find the exact trigonometric values of non-standard angles like 15° or 75°?

Tip: Regularly practice with real-world problems to internalize the values better

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Ratios
Angle Measurement

Formulas

sin(θ) values: sin(0°)=0, sin(30°)=1/2, sin(45°)=√2/2, sin(60°)=√3/2, sin(90°)=1
cos(θ) values: cos(0°)=1, cos(30°)=√3/2, cos(45°)=√2/2, cos(60°)=1/2, cos(90°)=0
tan(θ) values: tan(θ) = sin(θ) / cos(θ)

Theorems

Complementary Angle Theorem: sin(90° - θ) = cos(θ)
Tangent Definition: tan(θ) = sin(θ) / cos(θ)

Suitable Grade Level

Grades 9-11