Math Problem Statement

es sobre las transformadas de laplace, hay que resolverlo aplicando propiedades

Es sobre las transformadas de Laplace, hay que resolverlo aplicando propiedades para f(t) = cos^2(2t).

Solution

To solve the Laplace transform of the given function f(t)=cos2(2t)f(t) = \cos^2(2t), we can approach the problem using standard properties of the Laplace transform.

Step-by-Step Solution:

  1. Use a Trigonometric Identity: The expression cos2(2t)\cos^2(2t) can be simplified using the identity: cos2(x)=1+cos(2x)2\cos^2(x) = \frac{1 + \cos(2x)}{2} Substituting x=2tx = 2t, we get: cos2(2t)=1+cos(4t)2\cos^2(2t) = \frac{1 + \cos(4t)}{2}

    So, f(t)f(t) becomes: f(t)=1+cos(4t)2f(t) = \frac{1 + \cos(4t)}{2}

  2. Break the Function into Simpler Terms: Now we have: f(t)=12+cos(4t)2f(t) = \frac{1}{2} + \frac{\cos(4t)}{2}

  3. Apply the Laplace Transform: We now take the Laplace transform of each term separately:

    • The Laplace transform of a constant aa is: L{a}=as\mathcal{L}\{a\} = \frac{a}{s} So, for 12\frac{1}{2}, the Laplace transform is: L{12}=12s\mathcal{L}\left\{\frac{1}{2}\right\} = \frac{1}{2s}

    • The Laplace transform of cos(bt)\cos(bt) is: L{cos(bt)}=ss2+b2\mathcal{L}\{\cos(bt)\} = \frac{s}{s^2 + b^2} For cos(4t)2\frac{\cos(4t)}{2}, we use b=4b = 4, so: L{cos(4t)2}=12ss2+16\mathcal{L}\left\{\frac{\cos(4t)}{2}\right\} = \frac{1}{2} \cdot \frac{s}{s^2 + 16}

  4. Combine the Results: Adding the two terms together, the total Laplace transform is: L{f(t)}=12s+s2(s2+16)\mathcal{L}\{f(t)\} = \frac{1}{2s} + \frac{s}{2(s^2 + 16)}

Final Answer:

L{cos2(2t)}=12s+s2(s2+16)\mathcal{L}\{ \cos^2(2t) \} = \frac{1}{2s} + \frac{s}{2(s^2 + 16)}

Would you like more details or further clarifications?

Here are some related questions for deeper understanding:

  1. How does the Laplace transform handle functions involving higher powers of trigonometric functions?
  2. What is the significance of the identity cos2(x)=1+cos(2x)2\cos^2(x) = \frac{1 + \cos(2x)}{2} in simplifying such problems?
  3. How would you apply Laplace transform properties to other trigonometric identities, like sin2(t)\sin^2(t)?
  4. What is the inverse Laplace transform of s2(s2+16)\frac{s}{2(s^2 + 16)}?
  5. How does the Laplace transform of a sum of functions relate to the individual transforms?

Tip: When dealing with trigonometric functions in Laplace transforms, it's helpful to memorize common identities and transforms to simplify the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace Transform
Trigonometric Identities
Integral Transforms

Formulas

\( \cos^2(x) = \frac{1 + \cos(2x)}{2} \)
Laplace transform of a constant \( \mathcal{L}\{a\} = \frac{a}{s} \)
Laplace transform of \( \cos(bt) \): \( \mathcal{L}\{\cos(bt)\} = \frac{s}{s^2 + b^2} \)

Theorems

Properties of Laplace Transform
Trigonometric Identity for Cosine Squared

Suitable Grade Level

Undergraduate Mathematics