Math Problem Statement
Find the laplace transform of the following time function given that the final answer is 1/s^2 - e-Ts/s2 + (-T*e^-2Ts)/s
Solution
To find the Laplace Transform of the given time function , let's break down the function based on the piecewise definition implied by the graph.
Step 1: Analyze the function
From the graph:
- For , (This is a line with slope ).
- For , (This is a constant function).
- For , .
So, the function can be represented as:
\frac{t}{T}, & 0 \leq t < T \\ 1, & T \leq t < 2T \\ 0, & t \geq 2T \end{cases}$$ ### Step 2: Express $$f(t)$$ using unit step functions We can express this function in terms of unit step functions $$u(t)$$: $$f(t) = \left( \frac{t}{T} \right) u(t) - \left( \frac{t-T}{T} \right) u(t-T) + u(t-T) - u(t-2T)$$ Simplifying the expression: $$f(t) = \frac{t}{T} u(t) - \frac{t-T}{T} u(t-T) + u(t-T) - u(t-2T)$$ ### Step 3: Find the Laplace Transform of each term Using the Laplace Transform properties: 1. **$$\frac{t}{T} u(t)$$**: $$\mathcal{L}\left\{ \frac{t}{T} u(t) \right\} = \frac{1}{T} \cdot \frac{1}{s^2}$$ 2. **$$-\frac{t-T}{T} u(t-T)$$**: Use the time-shifting property: $$\mathcal{L}\{f(t-T)u(t-T)\} = e^{-Ts} \mathcal{L}\{f(t)\}$$. $$\mathcal{L}\left\{ -\frac{t-T}{T} u(t-T) \right\} = -\frac{1}{T} e^{-Ts} \cdot \frac{1}{s^2}$$ 3. **$$u(t-T)$$**: $$\mathcal{L}\left\{ u(t-T) \right\} = \frac{e^{-Ts}}{s}$$ 4. **$$-u(t-2T)$$**: $$\mathcal{L}\left\{ -u(t-2T) \right\} = -\frac{e^{-2Ts}}{s}$$ ### Step 4: Combine the results The total Laplace Transform is: \[ \mathcal{L}\Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Laplace Transform
Piecewise Functions
Unit Step Function
Time Shifting Property
Formulas
Laplace Transform properties
Theorems
-
Suitable Grade Level
Advanced Undergraduate
Related Recommendation
Laplace Transform of Piecewise Linear Function - Step-by-Step Solution
Laplace Transform of Piecewise Function
Laplace Transform of f(t) = e^(-2t) sin(t) - e^(-2t) sin(t - π) U(t - π)
Laplace Transform of a Piecewise Function Using Heaviside Step Functions
Laplace Transform of Piecewise Function f(t) = t/τ, 1 for Different Intervals