Math Problem Statement

Consider the function: \( f(t) = \begin{cases} t^2, & 0 \leq t < 2 \\ 7, & t \geq 2 \end{cases} \) (a) Represent \( f(t) \) using a combination of Heaviside step functions. Use \( h(t - c) \) for the Heaviside function. (b) Find the Laplace transform \( F(s) = \mathcal{L} \{ f(t) \} \).

Solution

Let's work through each part of this problem step-by-step.

Part (a): Represent f(t)f(t) using the Heaviside step function

The function f(t)f(t) is defined as:

\begin{cases} t^2 & \text{for } 0 \leq t < 2, \\ 7 & \text{for } t \geq 2. \end{cases}$$ To represent $$f(t)$$ using the Heaviside step function $$h(t - c)$$, we can rewrite $$f(t)$$ in a piecewise form that transitions from $$t^2$$ to 7 at $$t = 2$$. The Heaviside step function $$h(t - 2)$$ "activates" at $$t = 2$$. We can use it to modify $$f(t)$$ as follows: $$f(t) = t^2 + (7 - t^2) \cdot h(t - 2)$$ Here's how this expression works: - For $$0 \leq t < 2$$, $$h(t - 2) = 0$$, so $$f(t) = t^2$$. - For $$t \geq 2$$, $$h(t - 2) = 1$$, making $$f(t) = t^2 + (7 - t^2) = 7$$. So, the answer to part (a) is: $$f(t) = t^2 + (7 - t^2) \cdot h(t - 2).$$ ### Part (b): Find the Laplace transform $$F(s) = \mathcal{L}\{f(t)\}$$ Now, let's find the Laplace transform of $$f(t)$$ as defined in part (a). #### Step-by-Step Laplace Transform Calculation 1. **Laplace transform of $$t^2$$**: $$\mathcal{L}\{t^2\} = \frac{2}{s^3}.$$ 2. **Laplace transform of $$(7 - t^2) \cdot h(t - 2)$$**: Using the **second shifting theorem** (i.e., $$\mathcal{L}\{f(t - a) h(t - a)\} = e^{-as} \mathcal{L}\{f(t)\}$$ where $$f(t) = 7 - t^2$$ and $$a = 2$$), we get: $$\mathcal{L}\{(7 - t^2) h(t - 2)\} = e^{-2s} \cdot \mathcal{L}\{7 - (t + 2)^2\}.$$ Let's break this down: 1. \( 7 - (t + 2)^2 = 7 - (t^2 + 4t + 4) = -t^2 - 4t + 3

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Piecewise Functions
Heaviside Step Function
Laplace Transform

Formulas

Heaviside function representation
Laplace transform using second shifting theorem

Theorems

Second Shifting Theorem

Suitable Grade Level

Undergraduate Mathematics