Math Problem Statement

Consider the function: f(t) = \begin{cases} 2, & t < 2 \\ t - 2, & 2 \leq t < 7 \\ 4, & t \geq 7 \end{cases}. Represent f(t) using a combination of Heaviside step functions. Use h(t - c) for the Heaviside function h_c(t). Find the Laplace transform F(s) = \mathcal{L} \{ f(t) \}.

Solution

Let's break down this problem step by step.

Given Function

The function f(t)f(t) is defined in pieces:

\begin{cases} 2, & t < 2 \\ t - 2, & 2 \leq t < 7 \\ 4, & t \geq 7 \end{cases}$$ ### Part (a): Represent $$f(t)$$ Using Heaviside Step Functions To express $$f(t)$$ in terms of Heaviside functions $$h(t - c)$$, let's represent each change in the function at the points $$t = 2$$ and $$t = 7$$. 1. **Base function**: For $$t < 2$$, $$f(t) = 2$$. 2. **Change at $$t = 2$$**: When $$t \geq 2$$, the function changes to $$t - 2$$. We can represent this change as: $$(t - 2 - 2) h(t - 2) = (t - 2) h(t - 2)$$ 3. **Change at $$t = 7$$**: When $$t \geq 7$$, the function changes to 4. We can express this by subtracting $$(t - 2)$$ and adding 4 at $$t = 7$$: $$(4 - (t - 2)) h(t - 7) = (4 - t + 2) h(t - 7)$$ Thus, the Heaviside representation of $$f(t)$$ is: $$f(t) = 2 + (t - 2) h(t - 2) + (4 - (t - 2)) h(t - 7)$$ ### Part (b): Find the Laplace Transform $$F(s) = \mathcal{L} \{ f(t) \}$$ To find $$F(s)$$, we will take the Laplace transform of each term. 1. **Laplace of $$2$$**: $$\mathcal{L}\{2\} = \frac{2}{s}$$ 2. **Laplace of $$(t - 2) h(t - 2)$$**: Using the shift property, $$\mathcal{L}\{(t - a) h(t - a)\} = \frac{e^{-as}}{s^2}$$, we get: $$\mathcal{L}\{(t - 2) h(t - 2)\} = \frac{e^{-2s}}{s^2}$$ 3. **Laplace of $$(4 - (t - 2)) h(t - 7)$$**: Simplify this term as \( (4 - t + 2) = 4 - t + 2 \

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Piecewise functions
Heaviside step functions
Laplace transform

Formulas

Heaviside step function representation of piecewise functions
Laplace transform of Heaviside functions

Theorems

Laplace transform shifting theorem

Suitable Grade Level

Undergraduate level