Math Problem Statement

Soit la fonction réelle f définie par f(x) = 2cos(x). Trouver le polynôme d'interpolation de Lagrange de degré 2, noté P2(x), qui interpole f aux points 0, π et 2π. Calculer P2(3π/4). Majorer l'erreur d'interpolation.

Solution

Let's solve the given problem step-by-step.


1. Problem Breakdown:

The function is f(x)=2cos(x)f(x) = 2\cos(x). We are asked:

  1. To find the Lagrange interpolation polynomial P2(x)P_2(x) of degree 2 that interpolates f(x)f(x) at points 00, π\pi, and 2π2\pi.
  2. To compute P2(3π4)P_2\left(\frac{3\pi}{4}\right).
  3. To find an upper bound for the interpolation error.

Step 1: Lagrange Interpolation Polynomial

The general formula for the Lagrange interpolation polynomial is: P2(x)=i=02f(xi)i(x),P_2(x) = \sum_{i=0}^2 f(x_i) \ell_i(x), where i(x)\ell_i(x) is the Lagrange basis polynomial: i(x)=j=0ji2xxjxixj.\ell_i(x) = \prod_{\substack{j=0 \\ j \neq i}}^2 \frac{x - x_j}{x_i - x_j}. Here the interpolation points are: x0=0,x1=π,x2=2π.x_0 = 0, \quad x_1 = \pi, \quad x_2 = 2\pi.

Step 1.1: Compute f(xi)f(x_i)

f(0)=2cos(0)=2,f(π)=2cos(π)=2,f(2π)=2cos(2π)=2.f(0) = 2\cos(0) = 2, \quad f(\pi) = 2\cos(\pi) = -2, \quad f(2\pi) = 2\cos(2\pi) = 2.

Step 1.2: Basis Polynomials i(x)\ell_i(x)

  • For 0(x)\ell_0(x): 0(x)=(xπ)(x2π)(0π)(02π)=(xπ)(x2π)π(2π)=(xπ)(x2π)2π2.\ell_0(x) = \frac{(x - \pi)(x - 2\pi)}{(0 - \pi)(0 - 2\pi)} = \frac{(x - \pi)(x - 2\pi)}{\pi(2\pi)} = \frac{(x - \pi)(x - 2\pi)}{2\pi^2}.

  • For 1(x)\ell_1(x): [ \ell_1(x) = \frac{(x - 0)(x - 2\pi)}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Lagrange Interpolation
Trigonometric Functions
Error Analysis

Formulas

Lagrange Interpolation Polynomial: P2(x) = Σ f(xi) li(x)
Lagrange Basis Polynomial: li(x) = Π (x - xj) / (xi - xj)
Trigonometric Function Values: cos(x)

Theorems

Lagrange Interpolation Error Formula

Suitable Grade Level

Undergraduate (Math/Engineering Students)