Math Problem Statement
実数の範囲で考えます。 0.99999・・・ = 1 を考える。 x<1 であれば、x=1 との差は常に有限。 有限の差は、無限に分割できる。 分割して小さくなっても、やはり有限である、は正しいか? 分割の逆で、有限を無限に積み上げていってみる。 x = lim(n→∞){1 - 10^(-n)} = 0.99999… = 1 は、何か、おかしくないか?
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Real Numbers
Limits
Infinite Series
Formulas
x = lim(n→∞){1 - 10^(-n)}
10x - x = 9x
x = 1
Theorems
Limit of an infinite decimal representation
Equality of 0.999... and 1
Suitable Grade Level
University-level
Related Recommendation
Understanding Why 0.999 Repeating Equals 1
Is 0.99999... = 1? Understanding Infinitesimals and Infinity in Real Numbers
Proving that 0.9 Repeating Equals 1
Understanding Limits and Infinite Series: From Convergence to Zero
Understanding Movement and 0.999... = 1 Through Hyperreal Numbers and Infinitesimals