Math Problem Statement
Find the equation of the inverse of f(x) = 6^x + 2.
Solution
To find the inverse of the function , follow these steps:
-
Step 1: Replace with :
-
Step 2: Swap and :
-
Step 3: Solve for :
- First, subtract 2 from both sides:
- Now, take the logarithm of both sides. Since the base of the exponent is 6, use the logarithm with base 6:
Thus, the inverse function is:
Would you like more details or have any questions?
Here are some related questions to further your understanding:
- How do you verify that a function and its inverse are correct?
- What is the domain and range of ?
- What is the relationship between logarithmic and exponential functions?
- How does the base of the logarithm affect the shape of its graph?
- How can you find the inverse of more complex exponential functions?
Tip: Always check the domain of the inverse function, especially when dealing with logarithms! In this case, , so .
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Inverse functions
Exponential functions
Logarithms
Formulas
y = 6^x + 2
log_b(a) = x if b^x = a
Theorems
Properties of logarithms and exponentials
Inverse function theorem
Suitable Grade Level
Grades 10-12