Math Problem Statement

what if instead i sub u = x^3/2 and then take u = a*sin(deta)

Solution

Using the substitution u=x3/2u = x^{3/2} and then substituting u=asinθu = a \sin \theta can be a more efficient way to solve this integral. Let's follow this method step-by-step.

Step-by-Step Solution:

  1. Substitution u=x3/2u = x^{3/2}: u=x3/2    du=32x1/2dx    dx=23x1/2duu = x^{3/2} \implies du = \frac{3}{2} x^{1/2} \, dx \implies dx = \frac{2}{3} x^{-1/2} \, du Since x=(u)2/3x = (u)^{2/3}, dx=23(u2/3)1/2du=23u1/3dudx = \frac{2}{3} (u^{2/3})^{-1/2} \, du = \frac{2}{3} u^{-1/3} \, du

  2. Rewrite the integral: x3/2a2xdx=ua2(u)2/323u1/3du=23u2/3a2u2/3du\int \frac{x^{3/2}}{\sqrt{a^2 - x}} \, dx = \int \frac{u}{\sqrt{a^2 - (u)^{2/3}}} \cdot \frac{2}{3} u^{-1/3} \, du = \frac{2}{3} \int \frac{u^{2/3}}{\sqrt{a^2 - u^{2/3}}} \, du

  3. Simplify the integral: 23u2/3a2u2/3du\frac{2}{3} \int \frac{u^{2/3}}{\sqrt{a^2 - u^{2/3}}} \, du

  4. Second substitution u=asinθu = a \sin \theta: u=asinθ    du=acosθdθu = a \sin \theta \implies du = a \cos \theta \, d\theta The integral becomes: [ \frac{2}{3} \int \frac{(a \sin \theta)^{2/3}}{\sqrt{a^2 - (

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method
Trigonometric Substitution

Formulas

Substitution formula: u = x^(3/2)
Trigonometric substitution: u = a*sin(theta)

Theorems

-

Suitable Grade Level

Advanced College Level