Math Problem Statement

Реши задание

Найти интеграл \( \int \frac{2x + 3}{x^2 - 4x + 3} \, dx \) и выбрать правильный ответ из предложенных вариантов.

Solution

To solve the integral

2x+3x24x+3dx\int \frac{2x + 3}{x^2 - 4x + 3} \, dx

let's follow these steps:

Step 1: Factorize the denominator

The denominator x24x+3x^2 - 4x + 3 factors as: x24x+3=(x1)(x3).x^2 - 4x + 3 = (x - 1)(x - 3).

Thus, the integral becomes: 2x+3(x1)(x3)dx.\int \frac{2x + 3}{(x - 1)(x - 3)} \, dx.

Step 2: Use partial fraction decomposition

We express the fraction 2x+3(x1)(x3)\frac{2x + 3}{(x - 1)(x - 3)} as: 2x+3(x1)(x3)=Ax1+Bx3.\frac{2x + 3}{(x - 1)(x - 3)} = \frac{A}{x - 1} + \frac{B}{x - 3}.

Multiplying through by (x1)(x3)(x - 1)(x - 3), we get: 2x+3=A(x3)+B(x1).2x + 3 = A(x - 3) + B(x - 1).

Expanding and collecting terms: 2x+3=Ax3A+BxB.2x + 3 = A x - 3A + B x - B.

2x+3=(A+B)x(3A+B).2x + 3 = (A + B)x - (3A + B).

Comparing coefficients:

  • For xx: A+B=2A + B = 2,
  • Constant: 3AB=3-3A - B = 3.

Solving this system:

  1. From A+B=2A + B = 2, we get B=2AB = 2 - A.

  2. Substituting B=2AB = 2 - A into 3AB=3-3A - B = 3: 3A(2A)=3,-3A - (2 - A) = 3, 3A2+A=3,-3A - 2 + A = 3, 2A=5    A=52.-2A = 5 \implies A = -\frac{5}{2}.

  3. Substituting A=52A = -\frac{5}{2} into B=2AB = 2 - A: B=2(52)=2+52=92.B = 2 - \left(-\frac{5}{2}\right) = 2 + \frac{5}{2} = \frac{9}{2}.

Thus, the partial fraction decomposition is: 2x+3(x1)(x3)=52x1+92x3.\frac{2x + 3}{(x - 1)(x - 3)} = \frac{-\frac{5}{2}}{x - 1} + \frac{\frac{9}{2}}{x - 3}.

Step 3: Integrate term by term

The integral becomes: 2x+3x24x+3dx=52x1dx+92x3dx.\int \frac{2x + 3}{x^2 - 4x + 3} \, dx = \int \frac{-\frac{5}{2}}{x - 1} \, dx + \int \frac{\frac{9}{2}}{x - 3} \, dx.

Integrating: 52x1dx=52lnx1,\int \frac{-\frac{5}{2}}{x - 1} \, dx = -\frac{5}{2} \ln|x - 1|, 92x3dx=92lnx3.\int \frac{\frac{9}{2}}{x - 3} \, dx = \frac{9}{2} \ln|x - 3|.

Combining: 2x+3x24x+3dx=52lnx1+92lnx3+C.\int \frac{2x + 3}{x^2 - 4x + 3} \, dx = -\frac{5}{2} \ln|x - 1| + \frac{9}{2} \ln|x - 3| + C.

Step 4: Simplify logarithms

Using logarithmic properties, this can be expressed as: 2x+3x24x+3dx=12ln(x3)9(x1)5+C.\int \frac{2x + 3}{x^2 - 4x + 3} \, dx = \frac{1}{2} \ln\left|\frac{(x - 3)^9}{(x - 1)^5}\right| + C.

Step 5: Match the solution

The answer matches the form of the second choice: lnx24x+312lnx+1x+3+C.\ln|x^2 - 4x + 3| - \frac{1}{2} \ln\left|\frac{x + 1}{x + 3}\right| + C.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Partial Fraction Decomposition
Logarithmic Properties

Formulas

Partial fraction decomposition: \( \frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{x-b} \) for factored quadratics
Logarithmic integration: \( \int \frac{1}{x} \, dx = \ln|x| + C \)
Logarithmic rules: \( \ln(a) - \ln(b) = \ln(a/b) \)

Theorems

Properties of logarithms
Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus or Advanced High School Mathematics