Math Problem Statement

solve a random integral

Solution

Let's solve the following random integral:

e2xsin(3x)dx\int e^{2x} \sin(3x) \, dx

To solve this integral, we will use integration by parts twice. Integration by parts formula is given by:

udv=uvvdu\int u \, dv = uv - \int v \, du

First, let's set: u=e2xanddv=sin(3x)dxu = e^{2x} \quad \text{and} \quad dv = \sin(3x) \, dx

Next, we find dudu and vv:

du=2e2xdxdu = 2e^{2x} \, dx

v=sin(3x)dx=13cos(3x)v = \int \sin(3x) \, dx = -\frac{1}{3} \cos(3x)

Now, apply the integration by parts formula:

e2xsin(3x)dx=e2x(13cos(3x))(13cos(3x))2e2xdx\int e^{2x} \sin(3x) \, dx = e^{2x} \left(-\frac{1}{3} \cos(3x)\right) - \int \left(-\frac{1}{3} \cos(3x)\right) \cdot 2e^{2x} \, dx

Simplify:

=13e2xcos(3x)+23e2xcos(3x)dx= -\frac{1}{3} e^{2x} \cos(3x) + \frac{2}{3} \int e^{2x} \cos(3x) \, dx

We now need to solve the integral e2xcos(3x)dx\int e^{2x} \cos(3x) \, dx. Again, we use integration by parts, setting:

u=e2xanddv=cos(3x)dxu = e^{2x} \quad \text{and} \quad dv = \cos(3x) \, dx

Next, we find dudu and vv:

du=2e2xdxdu = 2e^{2x} \, dx

v=cos(3x)dx=13sin(3x)v = \int \cos(3x) \, dx = \frac{1}{3} \sin(3x)

Now, apply the integration by parts formula again:

e2xcos(3x)dx=e2x(13sin(3x))(13sin(3x))2e2xdx\int e^{2x} \cos(3x) \, dx = e^{2x} \left(\frac{1}{3} \sin(3x)\right) - \int \left(\frac{1}{3} \sin(3x)\right) \cdot 2e^{2x} \, dx

Simplify:

=13e2xsin(3x)23e2xsin(3x)dx= \frac{1}{3} e^{2x} \sin(3x) - \frac{2}{3} \int e^{2x} \sin(3x) \, dx

Now we have:

e2xcos(3x)dx=13e2xsin(3x)23e2xsin(3x)dx\int e^{2x} \cos(3x) \, dx = \frac{1}{3} e^{2x} \sin(3x) - \frac{2}{3} \int e^{2x} \sin(3x) \, dx

Let's denote I=e2xsin(3x)dxI = \int e^{2x} \sin(3x) \, dx. Then:

I=13e2xcos(3x)+23(13e2xsin(3x)23I)I = -\frac{1}{3} e^{2x} \cos(3x) + \frac{2}{3} \left( \frac{1}{3} e^{2x} \sin(3x) - \frac{2}{3} I \right)

Simplify:

I=13e2xcos(3x)+29e2xsin(3x)49II = -\frac{1}{3} e^{2x} \cos(3x) + \frac{2}{9} e^{2x} \sin(3x) - \frac{4}{9} I

Combine like terms:

I+49I=13e2xcos(3x)+29e2xsin(3x)I + \frac{4}{9} I = -\frac{1}{3} e^{2x} \cos(3x) + \frac{2}{9} e^{2x} \sin(3x)

139I=13e2xcos(3x)+29e2xsin(3x)\frac{13}{9} I = -\frac{1}{3} e^{2x} \cos(3x) + \frac{2}{9} e^{2x} \sin(3x)

Solve for II:

I=913(13e2xcos(3x)+29e2xsin(3x))I = \frac{9}{13} \left( -\frac{1}{3} e^{2x} \cos(3x) + \frac{2}{9} e^{2x} \sin(3x) \right)

Simplify:

I=313e2xcos(3x)+213e2xsin(3x)+CI = -\frac{3}{13} e^{2x} \cos(3x) + \frac{2}{13} e^{2x} \sin(3x) + C

So, the solution to the integral is:

e2xsin(3x)dx=313e2xcos(3x)+213e2xsin(3x)+C\int e^{2x} \sin(3x) \, dx = -\frac{3}{13} e^{2x} \cos(3x) + \frac{2}{13} e^{2x} \sin(3x) + C

Would you like more details or have any questions?


  1. What is the integration by parts formula?
  2. How do you choose uu and dvdv in integration by parts?
  3. What is the process for finding dudu and vv in integration by parts?
  4. How do you handle integrals involving products of exponential and trigonometric functions?
  5. Why did we need to use integration by parts twice in this problem?
  6. How can we simplify expressions involving integrals during integration by parts?
  7. What role do constants of integration (CC) play in indefinite integrals?
  8. Can the integration by parts method be applied to other types of integrals?

Tip: When solving integrals involving products of functions, always consider if integration by parts can simplify the process, especially when the integral reappears in the equation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by parts
Exponential functions
Trigonometric functions

Formulas

Integration by parts formula

Theorems

-

Suitable Grade Level

Advanced Undergraduate