Math Problem Statement

integrate by parts:

e^5x(sin3x)

Solution

To integrate e5xsin(3x)e^{5x} \sin(3x) by parts, we use the integration by parts formula:

udv=uvvdu\int u \, dv = uv - \int v \, du

We will choose uu and dvdv from the given integral:

e5xsin(3x)dx\int e^{5x} \sin(3x) \, dx

Let's make the following choices:

  • Let u=sin(3x)u = \sin(3x) (since the derivative of sin(3x)\sin(3x) will simplify the problem),
  • Let dv=e5xdxdv = e^{5x} \, dx (since the integral of e5xe^{5x} is simple).

Now, differentiate and integrate:

  • du=3cos(3x)dxdu = 3\cos(3x) \, dx,
  • v=15e5xv = \frac{1}{5} e^{5x}.

Using the integration by parts formula:

e5xsin(3x)dx=15e5xsin(3x)15e5x3cos(3x)dx\int e^{5x} \sin(3x) \, dx = \frac{1}{5} e^{5x} \sin(3x) - \int \frac{1}{5} e^{5x} 3\cos(3x) \, dx

Simplify the second integral:

e5xsin(3x)dx=15e5xsin(3x)35e5xcos(3x)dx\int e^{5x} \sin(3x) \, dx = \frac{1}{5} e^{5x} \sin(3x) - \frac{3}{5} \int e^{5x} \cos(3x) \, dx

Now we need to apply integration by parts again to the remaining integral:

e5xcos(3x)dx\int e^{5x} \cos(3x) \, dx

Let’s choose:

  • u=cos(3x)u = \cos(3x),
  • dv=e5xdxdv = e^{5x} \, dx.

Then:

  • du=3sin(3x)dxdu = -3\sin(3x) \, dx,
  • v=15e5xv = \frac{1}{5} e^{5x}.

Now, apply the integration by parts formula again:

e5xcos(3x)dx=15e5xcos(3x)15e5x(3sin(3x))dx\int e^{5x} \cos(3x) \, dx = \frac{1}{5} e^{5x} \cos(3x) - \int \frac{1}{5} e^{5x} (-3\sin(3x)) \, dx

Simplifying:

e5xcos(3x)dx=15e5xcos(3x)+35e5xsin(3x)dx\int e^{5x} \cos(3x) \, dx = \frac{1}{5} e^{5x} \cos(3x) + \frac{3}{5} \int e^{5x} \sin(3x) \, dx

Now we substitute this back into the original equation:

e5xsin(3x)dx=15e5xsin(3x)35(15e5xcos(3x)+35e5xsin(3x)dx)\int e^{5x} \sin(3x) \, dx = \frac{1}{5} e^{5x} \sin(3x) - \frac{3}{5} \left( \frac{1}{5} e^{5x} \cos(3x) + \frac{3}{5} \int e^{5x} \sin(3x) \, dx \right)

Distribute the terms:

e5xsin(3x)dx=15e5xsin(3x)325e5xcos(3x)925e5xsin(3x)dx\int e^{5x} \sin(3x) \, dx = \frac{1}{5} e^{5x} \sin(3x) - \frac{3}{25} e^{5x} \cos(3x) - \frac{9}{25} \int e^{5x} \sin(3x) \, dx

Now, collect the integrals of e5xsin(3x)e^{5x} \sin(3x) on one side:

e5xsin(3x)dx+925e5xsin(3x)dx=15e5xsin(3x)325e5xcos(3x)\int e^{5x} \sin(3x) \, dx + \frac{9}{25} \int e^{5x} \sin(3x) \, dx = \frac{1}{5} e^{5x} \sin(3x) - \frac{3}{25} e^{5x} \cos(3x)

Factor out the integral:

(1+925)e5xsin(3x)dx=15e5xsin(3x)325e5xcos(3x)\left( 1 + \frac{9}{25} \right) \int e^{5x} \sin(3x) \, dx = \frac{1}{5} e^{5x} \sin(3x) - \frac{3}{25} e^{5x} \cos(3x)

Simplify the coefficient:

3425e5xsin(3x)dx=15e5xsin(3x)325e5xcos(3x)\frac{34}{25} \int e^{5x} \sin(3x) \, dx = \frac{1}{5} e^{5x} \sin(3x) - \frac{3}{25} e^{5x} \cos(3x)

Finally, solve for the integral:

e5xsin(3x)dx=2534(15e5xsin(3x)325e5xcos(3x))\int e^{5x} \sin(3x) \, dx = \frac{25}{34} \left( \frac{1}{5} e^{5x} \sin(3x) - \frac{3}{25} e^{5x} \cos(3x) \right)

This simplifies to:

e5xsin(3x)dx=534e5xsin(3x)334e5xcos(3x)+C\int e^{5x} \sin(3x) \, dx = \frac{5}{34} e^{5x} \sin(3x) - \frac{3}{34} e^{5x} \cos(3x) + C

Where CC is the constant of integration.


Would you like to go over the steps in more detail, or do you have other questions? Here are some related questions:

  1. How does integration by parts work for other trigonometric-exponential integrals?
  2. How would the result change if we had a different trigonometric function, like cos(3x)\cos(3x) instead of sin(3x)\sin(3x)?
  3. What happens if we apply the method of undetermined coefficients instead of integration by parts?
  4. How can you recognize when to use integration by parts?
  5. What is the general form for integrating products of exponentials and trigonometric functions?

Tip: When dealing with integrals involving products of exponential and trigonometric functions, remember that you often need to use integration by parts twice.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by parts
Exponential functions
Trigonometric functions
Definite integrals

Formulas

Integration by parts formula: ∫u dv = uv - ∫v du
Formula for integrating exponential functions: ∫e^(ax) dx = (1/a)e^(ax)

Theorems

Integration by parts theorem
Reduction formula for trigonometric-exponential integrals

Suitable Grade Level

Grades 11-12