Math Problem Statement

Use integration by substitution to find this indefinite integral

sin(2x) − cos(2x)  dx

Solution

To find the indefinite integral of the function sin(2x)cos(2x)dx\sin(2x) - \cos(2x) \, dx using integration by substitution, we will handle each term separately.

Step 1: Integrate sin(2x)dx\sin(2x) \, dx

Let's use the substitution method for the first term.

  1. Substitute: Let u=2xu = 2x, hence du=2dxdu = 2 \, dx or dx=du2dx = \frac{du}{2}.

  2. Substitute into the integral: sin(2x)dx=sin(u)du2=12sin(u)du\int \sin(2x) \, dx = \int \sin(u) \cdot \frac{du}{2} = \frac{1}{2} \int \sin(u) \, du

  3. Integrate: The integral of sin(u)\sin(u) with respect to uu is cos(u)-\cos(u): 12sin(u)du=12cos(u)\frac{1}{2} \int \sin(u) \, du = -\frac{1}{2} \cos(u)

  4. Substitute back u=2xu = 2x: 12cos(2x)-\frac{1}{2} \cos(2x)

Step 2: Integrate cos(2x)dx\cos(2x) \, dx

  1. Substitute: Let u=2xu = 2x, so du=2dxdu = 2 \, dx or dx=du2dx = \frac{du}{2}.

  2. Substitute into the integral: cos(2x)dx=cos(u)du2=12cos(u)du\int \cos(2x) \, dx = \int \cos(u) \cdot \frac{du}{2} = \frac{1}{2} \int \cos(u) \, du

  3. Integrate: The integral of cos(u)\cos(u) with respect to uu is sin(u)\sin(u): 12cos(u)du=12sin(u)\frac{1}{2} \int \cos(u) \, du = \frac{1}{2} \sin(u)

  4. Substitute back u=2xu = 2x: 12sin(2x)\frac{1}{2} \sin(2x)

Step 3: Combine the results

Now, we combine the integrals for both terms:

(sin(2x)cos(2x))dx=12cos(2x)+12sin(2x)+C\int \left(\sin(2x) - \cos(2x)\right) \, dx = -\frac{1}{2} \cos(2x) + \frac{1}{2} \sin(2x) + C

Final Answer:

(sin(2x)cos(2x))dx=12sin(2x)12cos(2x)+C\int \left(\sin(2x) - \cos(2x)\right) \, dx = \frac{1}{2} \sin(2x) - \frac{1}{2} \cos(2x) + C

This is the indefinite integral of the function using integration by substitution.

Do you want any details or have any questions? Here are 8 related questions you might find interesting:

  1. How do you choose the right substitution in integration?
  2. What are common trigonometric identities useful in integration?
  3. How does substitution simplify trigonometric integrals?
  4. What are the advantages of using substitution over direct integration?
  5. Can substitution be used for definite integrals, and how?
  6. What is the integral of other common trigonometric functions like tan(x)\tan(x) or sec(x)\sec(x)?
  7. How do you reverse the substitution after integrating?
  8. What is the difference between substitution and integration by parts?

Tip: When using substitution in trigonometric integrals, always check if the integral can be simplified further by using trigonometric identities.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method
Trigonometric Integrals

Formulas

Integration by substitution

Theorems

-

Suitable Grade Level

Advanced High School