Math Problem Statement

indefinite integral of sin(2x)

Solution

To find the indefinite integral of sin(2x)\sin(2x), we proceed as follows:

sin(2x)dx\int \sin(2x) \, dx

  1. Use a substitution to simplify the integral. Let u=2xu = 2x, then du=2dxdu = 2 \, dx or dx=du2dx = \frac{du}{2}.

  2. Substitute into the integral:

    sin(2x)dx=sin(u)du2=12sin(u)du\int \sin(2x) \, dx = \int \sin(u) \cdot \frac{du}{2} = \frac{1}{2} \int \sin(u) \, du

  3. Now integrate sin(u)\sin(u):

    12sin(u)du=12(cos(u))=12cos(u)\frac{1}{2} \int \sin(u) \, du = \frac{1}{2}(-\cos(u)) = -\frac{1}{2} \cos(u)

  4. Substitute u=2xu = 2x back into the result:

    12cos(2x)+C-\frac{1}{2} \cos(2x) + C

Thus, the answer is:

sin(2x)dx=12cos(2x)+C\int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + C

Do you want more details on the substitution method or have any other questions?

Related Questions

  1. What is the indefinite integral of cos(2x)\cos(2x)?
  2. How do you find the indefinite integral of sin(kx)\sin(kx) for any constant kk?
  3. What is the integral of sin2(2x)\sin^2(2x)?
  4. How would you solve cos2(2x)dx\int \cos^2(2x) \, dx?
  5. What is the definite integral of sin(2x)\sin(2x) from 00 to π\pi?

Tip: Remember that substitution is a powerful technique for integrals involving functions of ax+bax + b, where aa is a constant.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Functions
Substitution Method

Formulas

\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + C

Theorems

Substitution in Integration

Suitable Grade Level

Grades 11-12