Math Problem Statement

Integrate √(mg/b)×{-1-e^[2×√(gb/m)×t]}/{1-e^[2×√(gb/m)×t]}

Solution

To solve the integral of the given function, we will first identify the expression to integrate. The expression is:

mgb×1e2gbmt1e2gbmtdt\int \sqrt{\frac{mg}{b}} \times \frac{-1 - e^{2\sqrt{\frac{gb}{m}}t}}{1 - e^{2\sqrt{\frac{gb}{m}}t}} \, dt

Step 1: Substituting constants

For simplicity, let's substitute constants to simplify the integral:

  • Let A=mgbA = \sqrt{\frac{mg}{b}}
  • Let α=gbm\alpha = \sqrt{\frac{gb}{m}}

Now the integral becomes:

A1e2αt1e2αtdtA \int \frac{-1 - e^{2\alpha t}}{1 - e^{2\alpha t}} \, dt

Step 2: Simplifying the integrand

The expression we are integrating simplifies to:

A(12eαt1e2αt)dtA \int \left( -1 - \frac{2 e^{\alpha t}}{1 - e^{2\alpha t}} \right) \, dt

We now separate the integral into two parts:

A(1dt2eαt1e2αtdt)A \left( \int -1 \, dt - 2 \int \frac{e^{\alpha t}}{1 - e^{2\alpha t}} \, dt \right)

Step 3: Solving the first integral

The first part is straightforward:

1dt=t\int -1 \, dt = -t

Step 4: Solving the second integral

For the second integral, let's use substitution. Let u=eαtu = e^{\alpha t}, so that du=αeαtdtdu = \alpha e^{\alpha t} dt. Thus:

eαt1e2αtdt=1αdu1u2\int \frac{e^{\alpha t}}{1 - e^{2\alpha t}} \, dt = \frac{1}{\alpha} \int \frac{du}{1 - u^2}

This is a standard integral of the form:

du1u2=12ln1+u1u\int \frac{du}{1 - u^2} = \frac{1}{2} \ln \left| \frac{1+u}{1-u} \right|

Substituting back u=eαtu = e^{\alpha t}, we get:

1α×12ln1+eαt1eαt\frac{1}{\alpha} \times \frac{1}{2} \ln \left| \frac{1+e^{\alpha t}}{1-e^{\alpha t}} \right|

Step 5: Combining the results

Now, combining the results from both integrals, we get:

A(t1αln1+eαt1eαt)A \left( -t - \frac{1}{\alpha} \ln \left| \frac{1+e^{\alpha t}}{1-e^{\alpha t}} \right| \right)

Substituting A=mgbA = \sqrt{\frac{mg}{b}} and α=gbm\alpha = \sqrt{\frac{gb}{m}}, the final answer is:

mgb(t1gbmln1+egbmt1egbmt)\sqrt{\frac{mg}{b}} \left( -t - \frac{1}{\sqrt{\frac{gb}{m}}} \ln \left| \frac{1+e^{\sqrt{\frac{gb}{m}} t}}{1-e^{\sqrt{\frac{gb}{m}} t}} \right| \right)

Let me know if you'd like further clarification or details.


Related Questions:

  1. How does substitution work in integral solving?
  2. Can you explain integrals involving logarithmic functions?
  3. How do we interpret integrals involving exponentials?
  4. What are the common techniques to solve complex integrals?
  5. How does a constant multiplier affect the outcome of an integral?

Tip: When encountering complex integrals, breaking them into simpler parts makes it easier to approach the solution.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution
Exponentials
Logarithmic Functions

Formulas

∫ A × (−1 − e^{2αt}) / (1 − e^{2αt}) dt
∫ du / (1 − u^2) = (1/2) ln |(1+u)/(1−u)|

Theorems

Substitution method for integration
Logarithmic integration of rational functions
Standard integral of 1/(1−u^2)

Suitable Grade Level

College Level