Math Problem Statement

Solve

Solve the integral: \( u = - \int \frac{\sin(3x)}{3} \cdot \frac{1}{1 + \sin(3x)} \, dx \)

Solution

Let's solve the given integral step-by-step. The integral is:

u=sin(3x)311+sin(3x)dxu = -\int \frac{\sin(3x)}{3} \cdot \frac{1}{1 + \sin(3x)} \, dx

Step 1: Simplify the integrand

The integrand simplifies to:

13sin(3x)1+sin(3x)dx-\frac{1}{3} \int \frac{\sin(3x)}{1 + \sin(3x)} \, dx

Step 2: Substitution

Let: t=1+sin(3x)t = 1 + \sin(3x) Then: dtdx=3cos(3x)\frac{dt}{dx} = 3\cos(3x) or equivalently: dt=3cos(3x)dxdt = 3\cos(3x) \, dx

Rewriting the integral: sin(3x)=t1\sin(3x) = t - 1

The integral becomes: 13t1t13cos(3x)3cos(3x)dt-\frac{1}{3} \int \frac{t - 1}{t} \cdot \frac{1}{3\cos(3x)} \, 3\cos(3x) \, dt

This simplifies to: 13t1tdt-\frac{1}{3} \int \frac{t - 1}{t} \, dt

Step 3: Split the fraction

Split the fraction: t1t=11t\frac{t - 1}{t} = 1 - \frac{1}{t}

The integral becomes: 13(11t)dt-\frac{1}{3} \int \left( 1 - \frac{1}{t} \right) \, dt

Split into two integrals: 13(1dt1tdt)-\frac{1}{3} \left( \int 1 \, dt - \int \frac{1}{t} \, dt \right)

Step 4: Evaluate each term

  1. The integral of 11 with respect to tt is: 1dt=t\int 1 \, dt = t
  2. The integral of 1t\frac{1}{t} is: 1tdt=lnt\int \frac{1}{t} \, dt = \ln|t|

Thus, the integral becomes: 13(tlnt)-\frac{1}{3} \left( t - \ln|t| \right)

Step 5: Substitute back t=1+sin(3x)t = 1 + \sin(3x)

Substitute t=1+sin(3x)t = 1 + \sin(3x) back into the result: 13(1+sin(3x)ln1+sin(3x))-\frac{1}{3} \left( 1 + \sin(3x) - \ln|1 + \sin(3x)| \right)

Simplify: u=13(1+sin(3x)ln1+sin(3x))u = -\frac{1}{3} \left( 1 + \sin(3x) - \ln|1 + \sin(3x)| \right)

Final Answer:

u=13sin(3x)3+ln1+sin(3x)3u = -\frac{1}{3} - \frac{\sin(3x)}{3} + \frac{\ln|1 + \sin(3x)|}{3}

Let me know if you'd like further clarification or details!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method
Trigonometry
Logarithms

Formulas

Substitution: Let \( t = 1 + \sin(3x) \)
Derivative: \( \frac{dt}{dx} = 3 \cos(3x) \)
Integral of \( \frac{1}{t} \): \( \int \frac{1}{t} \, dt = \ln|t| \)

Theorems

Substitution Method in Integration
Properties of Logarithms

Suitable Grade Level

Grades 11-12