Math Problem Statement

integrate cos^4 x dx

Solution

To integrate cos4(x)dx\cos^4(x) \, dx, we can use trigonometric identities to simplify the expression. Here's how we approach it step by step:

Step 1: Use the power-reduction identity

We can express cos4(x)\cos^4(x) in terms of lower powers of cosine using the power-reduction identity: cos2(x)=1+cos(2x)2\cos^2(x) = \frac{1 + \cos(2x)}{2} So, cos4(x)=(cos2(x))2=(1+cos(2x)2)2\cos^4(x) = (\cos^2(x))^2 = \left( \frac{1 + \cos(2x)}{2} \right)^2

Step 2: Expand the square

cos4(x)=(1+cos(2x))24=1+2cos(2x)+cos2(2x)4\cos^4(x) = \frac{(1 + \cos(2x))^2}{4} = \frac{1 + 2\cos(2x) + \cos^2(2x)}{4}

Step 3: Substitute and simplify the integral

Now we can split the integral into separate parts: cos4(x)dx=14(1+2cos(2x)+cos2(2x))dx\int \cos^4(x) \, dx = \frac{1}{4} \int \left( 1 + 2\cos(2x) + \cos^2(2x) \right) \, dx

Step 4: Integrate each term separately

  1. First term: 141dx=x4\frac{1}{4} \int 1 \, dx = \frac{x}{4}

  2. Second term: 142cos(2x)dx=12cos(2x)dx=12sin(2x)2=sin(2x)4\frac{1}{4} \int 2 \cos(2x) \, dx = \frac{1}{2} \int \cos(2x) \, dx = \frac{1}{2} \cdot \frac{\sin(2x)}{2} = \frac{\sin(2x)}{4}

  3. Third term: To integrate cos2(2x)\cos^2(2x), use the power-reduction identity again: cos2(2x)=1+cos(4x)2\cos^2(2x) = \frac{1 + \cos(4x)}{2} So the integral becomes: 14cos2(2x)dx=141+cos(4x)2dx=18(1+cos(4x))dx\frac{1}{4} \int \cos^2(2x) \, dx = \frac{1}{4} \int \frac{1 + \cos(4x)}{2} \, dx = \frac{1}{8} \int (1 + \cos(4x)) \, dx Now integrate both parts: 18(x+sin(4x)4)=x8+sin(4x)32\frac{1}{8} \left( x + \frac{\sin(4x)}{4} \right) = \frac{x}{8} + \frac{\sin(4x)}{32}

Step 5: Combine all parts

Now, combining all the integrated terms: cos4(x)dx=x4+sin(2x)4+x8+sin(4x)32+C\int \cos^4(x) \, dx = \frac{x}{4} + \frac{\sin(2x)}{4} + \frac{x}{8} + \frac{\sin(4x)}{32} + C Simplifying: cos4(x)dx=3x8+sin(2x)4+sin(4x)32+C\int \cos^4(x) \, dx = \frac{3x}{8} + \frac{\sin(2x)}{4} + \frac{\sin(4x)}{32} + C

This is the final answer.

Would you like further clarification on any step?


Here are some related questions for further exploration:

  1. How would you integrate cos6(x)dx\cos^6(x) \, dx?
  2. What are the power-reduction identities for higher powers of sine or cosine?
  3. How do you solve integrals involving trigonometric functions raised to odd powers?
  4. How can you derive the power-reduction formulas?
  5. Can this method be used to integrate functions like sin4(x)dx\sin^4(x) \, dx?

Tip: Always consider using trigonometric identities for simplifying integrals involving powers of sine and cosine!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Integration
Power-Reduction Identity
Integral Calculus

Formulas

Power-Reduction Identity: cos^2(x) = (1 + cos(2x)) / 2
cos^4(x) = (1 + 2cos(2x) + cos^2(2x)) / 4
Integral of cos^2(2x) using power-reduction identity

Theorems

Power-Reduction Theorem for Trigonometric Functions

Suitable Grade Level

Grades 11-12 and College-Level Calculus