Math Problem Statement

Integrate sin^3(3x)

Solution

To integrate sin3(3x)\sin^3(3x), we use trigonometric identities and substitution.

Steps:

  1. Rewrite sin3(3x)\sin^3(3x): Using the identity sin3(x)=sin(x)(1cos2(x))\sin^3(x) = \sin(x)(1 - \cos^2(x)): sin3(3x)=sin(3x)(1cos2(3x)).\sin^3(3x) = \sin(3x)(1 - \cos^2(3x)).

  2. Separate into two terms: sin3(3x)dx=sin(3x)dxsin(3x)cos2(3x)dx.\int \sin^3(3x) \, dx = \int \sin(3x) \, dx - \int \sin(3x)\cos^2(3x) \, dx.

  3. First integral (sin(3x)dx\int \sin(3x) \, dx): The integral of sin(3x)\sin(3x) is straightforward: sin(3x)dx=13cos(3x).\int \sin(3x) \, dx = -\frac{1}{3} \cos(3x).

  4. Second integral (sin(3x)cos2(3x)dx\int \sin(3x)\cos^2(3x) \, dx): Use substitution. Let u=cos(3x)u = \cos(3x), so du=3sin(3x)dxdu = -3\sin(3x) \, dx. This transforms the integral: sin(3x)cos2(3x)dx=13u2du.\int \sin(3x)\cos^2(3x) \, dx = -\frac{1}{3} \int u^2 \, du. Compute the integral of u2u^2: 13u2du=13u33=u39.-\frac{1}{3} \int u^2 \, du = -\frac{1}{3} \cdot \frac{u^3}{3} = -\frac{u^3}{9}. Substituting back u=cos(3x)u = \cos(3x): u39=cos3(3x)9.-\frac{u^3}{9} = -\frac{\cos^3(3x)}{9}.

  5. Combine results: sin3(3x)dx=13cos(3x)cos3(3x)9+C.\int \sin^3(3x) \, dx = -\frac{1}{3} \cos(3x) - \frac{\cos^3(3x)}{9} + C.

Final Answer:

sin3(3x)dx=13cos(3x)cos3(3x)9+C.\int \sin^3(3x) \, dx = -\frac{1}{3} \cos(3x) - \frac{\cos^3(3x)}{9} + C.

Would you like a deeper explanation or details on any of these steps?


Relative Questions:

  1. How does the substitution method work in integration?
  2. Can you explain the trigonometric identity sin3(x)=sin(x)(1cos2(x))\sin^3(x) = \sin(x)(1 - \cos^2(x))?
  3. What are common strategies for integrating powers of sine and cosine?
  4. How do you verify the correctness of an integral result?
  5. How would this integration change if the exponent were 4 instead of 3?

Tip: When integrating powers of trigonometric functions, breaking them into simpler components often makes the problem more manageable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Identities
Substitution Method

Formulas

sin^3(x) = sin(x)(1 - cos^2(x))
∫sin(kx) dx = -1/k cos(kx)
∫u^n du = u^(n+1)/(n+1) + C, where n ≠ -1

Theorems

Trigonometric substitution

Suitable Grade Level

Undergraduate Mathematics or Advanced High School Calculus