Math Problem Statement

Find the integral of x^3/sqrt(x^2+9)

Solution

To compute the integral of x3x2+9dx\frac{x^3}{\sqrt{x^2 + 9}} \, dx, we can proceed as follows:

Step 1: Simplify the integral

The integral is: x3x2+9dx\int \frac{x^3}{\sqrt{x^2 + 9}} \, dx

Step 2: Substitution

Let: u=x2+9so thatdu=2xdxu = x^2 + 9 \quad \text{so that} \quad du = 2x \, dx From u=x2+9u = x^2 + 9, we also know that x2=u9x^2 = u - 9. The integral becomes: x3x2+9dx=x2xudx\int \frac{x^3}{\sqrt{x^2 + 9}} \, dx = \int \frac{x^2 \cdot x}{\sqrt{u}} \, dx Using x2=u9x^2 = u - 9 and 2xdx=du2x \, dx = du, rewrite as: (u9)xudx=(u9)udu2\int \frac{(u - 9) x}{\sqrt{u}} \, dx = \int \frac{(u - 9)}{\sqrt{u}} \cdot \frac{du}{2}

Step 3: Simplify the expression

Distribute and simplify: (u9)u12du=12uudu921udu\int \frac{(u - 9)}{\sqrt{u}} \cdot \frac{1}{2} \, du = \frac{1}{2} \int \frac{u}{\sqrt{u}} \, du - \frac{9}{2} \int \frac{1}{\sqrt{u}} \, du =12udu92u1/2du= \frac{1}{2} \int \sqrt{u} \, du - \frac{9}{2} \int u^{-1/2} \, du

Step 4: Integrate

For udu\int \sqrt{u} \, du, use the power rule: u1/2du=23u3/2\int u^{1/2} \, du = \frac{2}{3} u^{3/2} For u1/2du\int u^{-1/2} \, du, use the power rule: u1/2du=2u1/2\int u^{-1/2} \, du = 2 u^{1/2} Substitute these results: 1223u3/2922u1/2\frac{1}{2} \cdot \frac{2}{3} u^{3/2} - \frac{9}{2} \cdot 2 u^{1/2} =13u3/29u1/2= \frac{1}{3} u^{3/2} - 9 u^{1/2}

Step 5: Back-substitute u=x2+9u = x^2 + 9

Recall that u=x2+9u = x^2 + 9. Replace uu back: 13(x2+9)3/29(x2+9)1/2+C\frac{1}{3} (x^2 + 9)^{3/2} - 9 (x^2 + 9)^{1/2} + C

Final Answer:

x3x2+9dx=13(x2+9)3/29(x2+9)1/2+C\int \frac{x^3}{\sqrt{x^2 + 9}} \, dx = \frac{1}{3} (x^2 + 9)^{3/2} - 9 (x^2 + 9)^{1/2} + C


Would you like a detailed step-by-step verification or further explanation?

Related Questions:

  1. How is substitution used effectively in integration?
  2. What is the power rule for integration, and why does it apply here?
  3. Can this problem be approached using a trigonometric substitution?
  4. What are common mistakes when substituting variables in integrals?
  5. How can definite integrals be applied to this expression?

Tip:

Always verify substitutions by differentiating the result to ensure you retrieve the original integrand!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution method
Power rule in calculus

Formulas

Power rule for integration: ∫x^n dx = x^(n+1)/(n+1) + C (for n ≠ -1)
Substitution: If u = g(x), then ∫f(g(x))g'(x) dx = ∫f(u) du

Theorems

Substitution theorem in integration
Power rule for integration

Suitable Grade Level

Undergraduate Calculus (Grades 11-12 or higher)