Math Problem Statement

integral 3 to 0 x^3 square root of (x^2+9) dx

Solution

To solve the integral 03x3x2+9dx\int_{0}^{3} x^3 \sqrt{x^2 + 9} \, dx, we'll use the substitution method.

Step 1: Substitution

Let u=x2+9u = x^2 + 9.

Then, differentiate uu with respect to xx: dudx=2xdu=2xdx\frac{du}{dx} = 2x \quad \Rightarrow \quad du = 2x \, dx

Now, rewrite the integral in terms of uu: x3x2+9dx=x2xx2+9dx=(u92)12udux^3 \sqrt{x^2 + 9} \, dx = x^2 \cdot x \sqrt{x^2 + 9} \, dx = \left(\frac{u - 9}{2}\right) \cdot \frac{1}{2} \sqrt{u} \, du

So, the integral becomes: 12(u92)udu=14(u9)udu\frac{1}{2} \int \left(\frac{u - 9}{2}\right) \sqrt{u} \, du = \frac{1}{4} \int (u - 9) \sqrt{u} \, du

Step 2: Simplify and Integrate

Expand the integrand: 14(uu9u)du=14(u3/2du9u1/2du)\frac{1}{4} \int (u \sqrt{u} - 9 \sqrt{u}) \, du = \frac{1}{4} \left( \int u^{3/2} \, du - 9 \int u^{1/2} \, du \right)

Now, integrate each term: u3/2du=25u5/2\int u^{3/2} \, du = \frac{2}{5} u^{5/2} u1/2du=23u3/2\int u^{1/2} \, du = \frac{2}{3} u^{3/2}

So the integral becomes: 14(25u5/2923u3/2)+C=110u5/232u3/2+C\frac{1}{4} \left( \frac{2}{5} u^{5/2} - 9 \cdot \frac{2}{3} u^{3/2} \right) + C = \frac{1}{10} u^{5/2} - \frac{3}{2} u^{3/2} + C

Step 3: Substitute Back u=x2+9u = x^2 + 9 and Evaluate

Substitute u=x2+9u = x^2 + 9 back into the equation: 110(x2+9)5/232(x2+9)3/203\frac{1}{10} (x^2 + 9)^{5/2} - \frac{3}{2} (x^2 + 9)^{3/2} \Bigg|_{0}^{3}

Evaluate at the bounds x=3x = 3 and x=0x = 0:

  • At x=3x = 3: 110(32+9)5/232(32+9)3/2=110(18)5/232(18)3/2\frac{1}{10} (3^2 + 9)^{5/2} - \frac{3}{2} (3^2 + 9)^{3/2} = \frac{1}{10} (18)^{5/2} - \frac{3}{2} (18)^{3/2}
  • At x=0x = 0: [ \frac{1}{10} (0^2 + 9)^{5/2} -

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method

Formulas

Integration by substitution

Theorems

-

Suitable Grade Level

Advanced College Level