Math Problem Statement

2\int_0^1 x^(3)\sqrt(1-x^(2))dx

Solution

The given integral is:

201x31x2dx2 \int_0^1 x^3 \sqrt{1 - x^2} \, dx

This is a standard integral that can be solved using a substitution method. Let's walk through the steps.

Step 1: Substitution

Let’s use the substitution x=sin(θ)x = \sin(\theta). Therefore, dx=cos(θ)dθdx = \cos(\theta) \, d\theta, and since 1x2=cos2(θ)1 - x^2 = \cos^2(\theta), we have:

1x2=cos(θ)\sqrt{1 - x^2} = \cos(\theta)

Now, changing the limits:

  • When x=0x = 0, sin(θ)=0\sin(\theta) = 0, so θ=0\theta = 0.
  • When x=1x = 1, sin(θ)=1\sin(\theta) = 1, so θ=π2\theta = \frac{\pi}{2}.

Thus, the integral becomes:

20π2(sin3(θ))(cos(θ))(cos(θ))dθ2 \int_0^{\frac{\pi}{2}} (\sin^3(\theta)) (\cos(\theta)) (\cos(\theta)) \, d\theta

This simplifies to:

20π2sin3(θ)cos2(θ)dθ2 \int_0^{\frac{\pi}{2}} \sin^3(\theta) \cos^2(\theta) \, d\theta

Step 2: Simplify the Expression

We now need to simplify sin3(θ)cos2(θ)\sin^3(\theta) \cos^2(\theta). Using the identity cos2(θ)=1sin2(θ)\cos^2(\theta) = 1 - \sin^2(\theta), we get:

sin3(θ)cos2(θ)=sin3(θ)(1sin2(θ))\sin^3(\theta) \cos^2(\theta) = \sin^3(\theta) (1 - \sin^2(\theta))

Thus, the integral becomes:

20π2sin3(θ)(1sin2(θ))dθ2 \int_0^{\frac{\pi}{2}} \sin^3(\theta) (1 - \sin^2(\theta)) \, d\theta

Expanding the terms:

20π2(sin3(θ)sin5(θ))dθ2 \int_0^{\frac{\pi}{2}} \left( \sin^3(\theta) - \sin^5(\theta) \right) \, d\theta

Step 3: Separate the Terms

Now, we can break the integral into two separate integrals:

2(0π2sin3(θ)dθ0π2sin5(θ)dθ)2 \left( \int_0^{\frac{\pi}{2}} \sin^3(\theta) \, d\theta - \int_0^{\frac{\pi}{2}} \sin^5(\theta) \, d\theta \right)

Step 4: Use Standard Integrals

The integrals of sinn(θ)\sin^n(\theta) for odd powers can be computed using known formulas. The general formula for 0π2sin2n+1(θ)dθ\int_0^{\frac{\pi}{2}} \sin^{2n+1}(\theta) \, d\theta is:

0π2sin2n+1(θ)dθ=4n(2n+1)22nπ2\int_0^{\frac{\pi}{2}} \sin^{2n+1}(\theta) \, d\theta = \frac{4^n}{(2n+1) \cdot 2^{2n}} \cdot \frac{\pi}{2}

For sin3(θ)\sin^3(\theta):

0π2sin3(θ)dθ=43\int_0^{\frac{\pi}{2}} \sin^3(\theta) \, d\theta = \frac{4}{3}

For sin5(θ)\sin^5(\theta):

0π2sin5(θ)dθ=85\int_0^{\frac{\pi}{2}} \sin^5(\theta) \, d\theta = \frac{8}{5}

Step 5: Final Calculation

Substitute these values back into the equation:

2(4385)=2(20152415)=2×415=8152 \left( \frac{4}{3} - \frac{8}{5} \right) = 2 \left( \frac{20}{15} - \frac{24}{15} \right) = 2 \times \frac{-4}{15} = \frac{-8}{15}

Final Answer:

815\boxed{-\frac{8}{15}}

Would you like any further explanation or breakdown of the steps? Here are 5 related questions to explore:

  1. How do you handle integrals with powers of trigonometric functions?
  2. Can you explain how the substitution x=sin(θ)x = \sin(\theta) simplifies the integral?
  3. What is the general method for solving integrals of the form 0π2sinn(θ)dθ\int_0^{\frac{\pi}{2}} \sin^n(\theta) \, d\theta?
  4. How do you apply standard integral tables to evaluate trigonometric integrals?
  5. What are some other types of integrals that benefit from trigonometric substitution?

Tip: For integrals involving trigonometric functions, often substitution and identity manipulations can reduce the problem to simpler forms, making the solution more straightforward.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution
Definite Integrals

Formulas

Trigonometric substitution: x = sin(θ), dx = cos(θ) dθ
Identity: 1 - sin^2(θ) = cos^2(θ)
Standard integral formula: ∫ sin^(2n+1)(θ) dθ

Theorems

Trigonometric Substitution Theorem
Definite Integral Evaluation using Standard Formulas

Suitable Grade Level

Undergraduate Calculus / Advanced High School Calculus