Math Problem Statement

how do i do this

How do I solve the integral \( \int x \sin^2(x) \, dx \)?

Solution

To solve the integral

xsin2(x)dx,\int x \sin^2(x) \, dx,

we can proceed by using integration by parts and a trigonometric identity for sin2(x)\sin^2(x).

Step 1: Rewrite sin2(x)\sin^2(x) using a trigonometric identity

The identity sin2(x)=1cos(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2} allows us to rewrite the integrand as: xsin2(x)dx=x1cos(2x)2dx.\int x \sin^2(x) \, dx = \int x \cdot \frac{1 - \cos(2x)}{2} \, dx. This simplifies to: xsin2(x)dx=12x(1cos(2x))dx.\int x \sin^2(x) \, dx = \frac{1}{2} \int x (1 - \cos(2x)) \, dx.

Expanding this, we get: 12xdx12xcos(2x)dx.\frac{1}{2} \int x \, dx - \frac{1}{2} \int x \cos(2x) \, dx.

Step 2: Solve each integral separately

Integral 1: 12xdx\frac{1}{2} \int x \, dx

This is straightforward: 12xdx=12x22=x24.\frac{1}{2} \int x \, dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4}.

Integral 2: 12xcos(2x)dx-\frac{1}{2} \int x \cos(2x) \, dx

For this integral, we can use integration by parts. Let u=xu = x and dv=cos(2x)dxdv = \cos(2x) \, dx.

Then, du=dxdu = dx and we integrate dvdv to get v=sin(2x)2v = \frac{\sin(2x)}{2}.

Using integration by parts, we have: xcos(2x)dx=xsin(2x)2sin(2x)2dx.\int x \cos(2x) \, dx = x \cdot \frac{\sin(2x)}{2} - \int \frac{\sin(2x)}{2} \, dx.

Simplifying: =xsin(2x)212sin(2x)dx.= \frac{x \sin(2x)}{2} - \frac{1}{2} \int \sin(2x) \, dx.

The integral of sin(2x)\sin(2x) is cos(2x)2-\frac{\cos(2x)}{2}, so we get: =xsin(2x)2+cos(2x)4.= \frac{x \sin(2x)}{2} + \frac{\cos(2x)}{4}.

Putting it all together

Substitute back into the original expression: xsin2(x)dx=x2412(xsin(2x)2+cos(2x)4).\int x \sin^2(x) \, dx = \frac{x^2}{4} - \frac{1}{2} \left( \frac{x \sin(2x)}{2} + \frac{\cos(2x)}{4} \right).

Simplify: =x24xsin(2x)4cos(2x)8+C,= \frac{x^2}{4} - \frac{x \sin(2x)}{4} - \frac{\cos(2x)}{8} + C, where CC is the constant of integration.

So, the final answer is: xsin2(x)dx=x24xsin(2x)4cos(2x)8+C.\int x \sin^2(x) \, dx = \frac{x^2}{4} - \frac{x \sin(2x)}{4} - \frac{\cos(2x)}{8} + C.

Would you like more details on any specific step?


Here are some related questions to deepen understanding:

  1. How can we use the integration by parts method for different trigonometric integrals?
  2. What are other trigonometric identities useful in integrals?
  3. How does substitution help in solving integrals like xsin2(x)dx\int x \sin^2(x) \, dx?
  4. Can this approach be extended to integrals involving sin3(x)\sin^3(x) or sin4(x)\sin^4(x)?
  5. Why is integration by parts particularly useful in integrals involving products of functions?

Tip: Recognizing when to apply trigonometric identities can simplify many integrals, making them more manageable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Trigonometric Integrals
Integration by Parts

Formulas

Trigonometric identity: \( \sin^2(x) = \frac{1 - \cos(2x)}{2} \)
Integration by parts: \( \int u \, dv = u v - \int v \, du \)

Theorems

Integration by Parts Theorem

Suitable Grade Level

Undergraduate or Advanced High School (AP Calculus)