Math Problem Statement

integrate (x^2sin(4x)dx)

Solution

To solve the integral x2sin(4x)dx\int x^2 \sin(4x) \, dx, we will use integration by parts. Since we have a product of two functions, x2x^2 and sin(4x)\sin(4x), we will apply the technique twice (or use it iteratively).

The formula for integration by parts is:

udv=uvvdu\int u \, dv = uv - \int v \, du

Step 1: First Integration by Parts

Let's choose u=x2u = x^2 and dv=sin(4x)dxdv = \sin(4x) dx.

Now, differentiate uu and integrate dvdv:

  • du=2xdxdu = 2x \, dx
  • To integrate dv=sin(4x)dxdv = \sin(4x) dx, we find vv: sin(4x)dx=14cos(4x)\int \sin(4x) dx = -\frac{1}{4} \cos(4x)

So, the first integration by parts gives: x2sin(4x)dx=14x2cos(4x)+142xcos(4x)dx\int x^2 \sin(4x) \, dx = -\frac{1}{4} x^2 \cos(4x) + \int \frac{1}{4} \cdot 2x \cos(4x) \, dx

This simplifies to: x2sin(4x)dx=14x2cos(4x)+12xcos(4x)dx\int x^2 \sin(4x) \, dx = -\frac{1}{4} x^2 \cos(4x) + \frac{1}{2} \int x \cos(4x) \, dx

Step 2: Second Integration by Parts

Now, we need to solve xcos(4x)dx\int x \cos(4x) \, dx, so we apply integration by parts again.

Let u=xu = x and dv=cos(4x)dxdv = \cos(4x) dx:

  • du=dxdu = dx
  • To integrate dv=cos(4x)dxdv = \cos(4x) dx, we find vv: cos(4x)dx=14sin(4x)\int \cos(4x) dx = \frac{1}{4} \sin(4x)

So the second integration by parts gives: xcos(4x)dx=14xsin(4x)14sin(4x)dx\int x \cos(4x) \, dx = \frac{1}{4} x \sin(4x) - \int \frac{1}{4} \sin(4x) \, dx

Step 3: Simplifying the Remaining Integral

Now, integrate sin(4x)dx\int \sin(4x) \, dx: sin(4x)dx=14cos(4x)\int \sin(4x) \, dx = -\frac{1}{4} \cos(4x)

Substituting everything back, we get: xcos(4x)dx=14xsin(4x)+116cos(4x)\int x \cos(4x) \, dx = \frac{1}{4} x \sin(4x) + \frac{1}{16} \cos(4x)

Step 4: Putting Everything Together

Now substitute this back into our original expression: x2sin(4x)dx=14x2cos(4x)+12(14xsin(4x)+116cos(4x))\int x^2 \sin(4x) \, dx = -\frac{1}{4} x^2 \cos(4x) + \frac{1}{2} \left( \frac{1}{4} x \sin(4x) + \frac{1}{16} \cos(4x) \right)

Simplifying further: x2sin(4x)dx=14x2cos(4x)+18xsin(4x)+132cos(4x)+C\int x^2 \sin(4x) \, dx = -\frac{1}{4} x^2 \cos(4x) + \frac{1}{8} x \sin(4x) + \frac{1}{32} \cos(4x) + C

Where CC is the constant of integration.

Final Answer:

x2sin(4x)dx=14x2cos(4x)+18xsin(4x)+132cos(4x)+C\int x^2 \sin(4x) \, dx = -\frac{1}{4} x^2 \cos(4x) + \frac{1}{8} x \sin(4x) + \frac{1}{32} \cos(4x) + C

Would you like further details or have any questions?

Here are some related questions for you:

  1. How do you determine when to apply integration by parts?
  2. What if the function involves higher powers of xx or other trigonometric functions?
  3. How do we apply integration by parts for definite integrals?
  4. Can you use substitution instead of integration by parts in this case?
  5. What are some common mistakes in integration by parts?

Tip: When dealing with products of polynomials and trigonometric functions, always look for patterns that suggest integration by parts.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Integration by Parts
Trigonometric Functions
Polynomials

Formulas

\int u \, dv = uv - \int v \, du
\int \sin(4x) dx = -\frac{1}{4} \cos(4x)
\int \cos(4x) dx = \frac{1}{4} \sin(4x)

Theorems

Integration by Parts

Suitable Grade Level

Grades 11-12