Math Problem Statement

Evaluate the integral ∫ x / (12x² - 4) dx.

Solution

The given integral is:

x12x24dx\int \frac{x}{12x^2 - 4} \, dx

Solution

Step 1: Simplify the denominator

Factor out 44 from the denominator: 12x24=4(3x21)12x^2 - 4 = 4(3x^2 - 1) Thus, the integral becomes: x4(3x21)dx=14x3x21dx\int \frac{x}{4(3x^2 - 1)} \, dx = \frac{1}{4} \int \frac{x}{3x^2 - 1} \, dx

Step 2: Substitution

Let: u=3x21so thatdu=6xdxor16du=xdxu = 3x^2 - 1 \quad \text{so that} \quad du = 6x \, dx \quad \text{or} \quad \frac{1}{6} du = x \, dx

Substitute uu and dudu into the integral: 14x3x21dx=141u16du=1241udu\frac{1}{4} \int \frac{x}{3x^2 - 1} \, dx = \frac{1}{4} \int \frac{1}{u} \cdot \frac{1}{6} \, du = \frac{1}{24} \int \frac{1}{u} \, du

Step 3: Integrate

The integral of 1u\frac{1}{u} is lnu\ln|u|: 1241udu=124lnu+C\frac{1}{24} \int \frac{1}{u} \, du = \frac{1}{24} \ln|u| + C

Step 4: Back-substitute uu

Substitute u=3x21u = 3x^2 - 1 back into the solution: 124lnu+C=124ln3x21+C\frac{1}{24} \ln|u| + C = \frac{1}{24} \ln|3x^2 - 1| + C

Final Answer:

x12x24dx=124ln3x21+C\int \frac{x}{12x^2 - 4} \, dx = \frac{1}{24} \ln|3x^2 - 1| + C

Would you like a detailed explanation of any step?


Related Questions:

  1. How do you handle integrals with quadratic expressions in the denominator?
  2. What is the importance of substitution in integration problems?
  3. How can you determine when to use logarithmic functions in integrals?
  4. What are other common examples of integrals involving x/(ax2+b)x / (ax^2 + b)?
  5. How does the constant factor 1/41/4 affect the integration process?

Tip:

Always check if the denominator can be factored or simplified before proceeding with substitution in integrals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution method
Logarithmic integration

Formulas

Integral of 1/u is ln|u| + C
Substitution: u = f(x) => du = f'(x) dx

Theorems

Logarithmic Integration Theorem

Suitable Grade Level

Grades 11-12