Math Problem Statement

Evaluate the integral \( \int \frac{\sqrt{1 + x}}{1 - x} \, dx \).

Solution

The integral shown in the image is:

1+x1xdx\int \frac{\sqrt{1 + x}}{1 - x} \, dx

Solution:

Step 1: Substitution

Let: u=1+xu2=1+xandx=u21u = \sqrt{1 + x} \quad \Rightarrow \quad u^2 = 1 + x \quad \text{and} \quad x = u^2 - 1

Differentiating u2=1+xu^2 = 1 + x: 2udu=dx2u \, du = dx

Substituting into the integral:

1+x1xdx=u1(u21)2udu\int \frac{\sqrt{1 + x}}{1 - x} \, dx = \int \frac{u}{1 - (u^2 - 1)} \cdot 2u \, du

Simplify the denominator 1(u21)1 - (u^2 - 1): 1u2+1=2u21 - u^2 + 1 = 2 - u^2

Thus, the integral becomes: 2u22u2du2 \int \frac{u^2}{2 - u^2} \, du

Step 2: Simplify and Partial Fraction

Rewrite the fraction: u22u2=1+22u2\frac{u^2}{2 - u^2} = -1 + \frac{2}{2 - u^2}

Now the integral is split as: 2(1+22u2)du=21du+222u2du2 \int \left( -1 + \frac{2}{2 - u^2} \right) \, du = -2 \int 1 \, du + 2 \int \frac{2}{2 - u^2} \, du

Step 3: Solve Individual Terms

  1. For 21du-2 \int 1 \, du: 21du=2u-2 \int 1 \, du = -2u

  2. For 212u2du2 \int \frac{1}{2 - u^2} \, du, use the formula: 1a2u2=12alna+uau\frac{1}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{a + u}{a - u} \right| Here a2=2a^2 = 2, so a=2a = \sqrt{2}: 12u2du=122ln2+u2u\int \frac{1}{2 - u^2} \, du = \frac{1}{2\sqrt{2}} \ln \left| \frac{\sqrt{2} + u}{\sqrt{2} - u} \right|

Thus: 212u2du=22ln2+u2u2 \int \frac{1}{2 - u^2} \, du = \frac{\sqrt{2}}{2} \ln \left| \frac{\sqrt{2} + u}{\sqrt{2} - u} \right|

Step 4: Combine Results

Combine the terms: 1+x1xdx=2u+2ln2+u2u+C\int \frac{\sqrt{1 + x}}{1 - x} \, dx = -2u + \sqrt{2} \ln \left| \frac{\sqrt{2} + u}{\sqrt{2} - u} \right| + C

Substitute back u=1+xu = \sqrt{1 + x}: 1+x1xdx=21+x+2ln2+1+x21+x+C\int \frac{\sqrt{1 + x}}{1 - x} \, dx = -2\sqrt{1 + x} + \sqrt{2} \ln \left| \frac{\sqrt{2} + \sqrt{1 + x}}{\sqrt{2} - \sqrt{1 + x}} \right| + C

Final Answer:

1+x1xdx=21+x+2ln2+1+x21+x+C\boxed{\int \frac{\sqrt{1 + x}}{1 - x} \, dx = -2\sqrt{1 + x} + \sqrt{2} \ln \left| \frac{\sqrt{2} + \sqrt{1 + x}}{\sqrt{2} - \sqrt{1 + x}} \right| + C}

Would you like more details or a simpler explanation of any part of this?


Related Questions:

  1. How do substitutions simplify complex integrals?
  2. What is the formula for integrating functions with a2u2a^2 - u^2?
  3. Why is logarithmic integration used in this problem?
  4. How can partial fractions help solve similar integrals?
  5. What are common applications of these integral techniques in physics or engineering?

Tip: Always check if substitutions reduce the integral into standard forms for faster solving!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method
Partial Fractions
Logarithmic Integration

Formulas

Substitution: \( u = \sqrt{1 + x} \)
Integration of \( \frac{1}{a^2 - u^2} \): \( \frac{1}{2a} \ln \left| \frac{a + u}{a - u} \right| \)

Theorems

Logarithmic Integration
Partial Fractions Decomposition

Suitable Grade Level

Undergraduate Mathematics or Advanced High School Calculus