Math Problem Statement
\int \frac{x}{\sqrt{1+x^4}}dx
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Integral Calculus
Substitution Method
Hyperbolic Functions
Formulas
Substitution: u = x^2, du = 2x dx
Standard Integral: \int \frac{du}{\sqrt{1+u^2}} = \text{arsinh}(u) = \ln(u + \sqrt{1 + u^2})
Theorems
Substitution Rule for Integrals
Hyperbolic Sine Function
Suitable Grade Level
University Level Calculus
Related Recommendation
Trigonometric Substitution in Integrals: Solving \int \frac{dx}{x \sqrt{1 - x^4}}
Integral of x / sqrt(4 + x^2): Step-by-Step Solution
Integral of 1 / (x^2 √(x^2 + 4)) Using Trigonometric Substitution
Evaluate ∫ (x / (1 + x^4)) dx using Substitution
Solve the Integral \( \int \frac{x \, dx}{\sqrt{1 - x^2}} \)