Math Problem Statement

integral for substituition

Solution

To find the integral of 14x2\sqrt{1 - 4x^2} using substitution, follow these steps:

Step 1: Substitution

Let’s use a trigonometric substitution to simplify the integral. The expression inside the square root, 14x21 - 4x^2, suggests a trigonometric substitution of the form: x=12sin(θ)x = \frac{1}{2} \sin(\theta) This is because sin2(θ)\sin^2(\theta) will simplify the square root.

Now, differentiate x=12sin(θ)x = \frac{1}{2} \sin(\theta) with respect to θ\theta: dx=12cos(θ)dθdx = \frac{1}{2} \cos(\theta) d\theta

Step 2: Rewrite the Integral

Substituting x=12sin(θ)x = \frac{1}{2} \sin(\theta) and dx=12cos(θ)dθdx = \frac{1}{2} \cos(\theta) d\theta into the integral: 14x2dx=14(12sin(θ))212cos(θ)dθ\int \sqrt{1 - 4x^2} \, dx = \int \sqrt{1 - 4\left(\frac{1}{2} \sin(\theta)\right)^2} \cdot \frac{1}{2} \cos(\theta) \, d\theta Simplify the expression inside the square root: 1sin2(θ)12cos(θ)dθ\int \sqrt{1 - \sin^2(\theta)} \cdot \frac{1}{2} \cos(\theta) \, d\theta Using the identity cos2(θ)=1sin2(θ)\cos^2(\theta) = 1 - \sin^2(\theta), the integral becomes: cos(θ)12cos(θ)dθ\int \cos(\theta) \cdot \frac{1}{2} \cos(\theta) \, d\theta 12cos2(θ)dθ\int \frac{1}{2} \cos^2(\theta) \, d\theta

Step 3: Simplify the Integral

Now, use the identity for cos2(θ)\cos^2(\theta): cos2(θ)=1+cos(2θ)2\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} Thus, the integral becomes: 121+cos(2θ)2dθ\frac{1}{2} \int \frac{1 + \cos(2\theta)}{2} \, d\theta 14(1+cos(2θ))dθ\frac{1}{4} \int (1 + \cos(2\theta)) \, d\theta This separates into two integrals: 14(1dθ+cos(2θ)dθ)\frac{1}{4} \left( \int 1 \, d\theta + \int \cos(2\theta) \, d\theta \right)

Step 4: Solve the Integral

Integrate each part: 14(θ+12sin(2θ))+C\frac{1}{4} \left( \theta + \frac{1}{2} \sin(2\theta) \right) + C Where CC is the constant of integration.

Step 5: Back-Substitute θ\theta

Recall that sin(θ)=2x\sin(\theta) = 2x, so: θ=arcsin(2x)\theta = \arcsin(2x) Also, using the double-angle identity sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta), substitute back sin(θ)=2x\sin(\theta) = 2x and cos(θ)=14x2\cos(\theta) = \sqrt{1 - 4x^2}: 14(arcsin(2x)+x14x2)+C\frac{1}{4} \left( \arcsin(2x) + x\sqrt{1 - 4x^2} \right) + C

Thus, the integral of 14x2\sqrt{1 - 4x^2} is: 14x2dx=14(arcsin(2x)+x14x2)+C\int \sqrt{1 - 4x^2} \, dx = \frac{1}{4} \left( \arcsin(2x) + x\sqrt{1 - 4x^2} \right) + C

Would you like any more details on this process or any further explanation?

Related Questions:

  1. How would the integral change if the function inside the square root was different?
  2. Can the integral be evaluated using other methods, like integration by parts?
  3. What is the geometric interpretation of this integral?
  4. How can this integral be applied in physics or engineering contexts?
  5. What is the definite integral of 14x2\sqrt{1 - 4x^2} over its domain?

Tip:

When using trigonometric substitution, always carefully back-substitute the original variable to express the final answer in the same terms as the original integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution

Formulas

Trigonometric substitution formula

Theorems

-

Suitable Grade Level

Advanced Mathematics