Math Problem Statement

integrate

∫ sin^3(x) cos^5(x) dx

Solution

To solve the integral

sin3(x)cos5(x)dx,\int \sin^3(x) \cos^5(x) \, dx,

we can use a substitution technique. Here’s the step-by-step solution:

Step 1: Rewrite sin3(x)\sin^3(x)

Rewrite sin3(x)\sin^3(x) as sin2(x)sin(x)\sin^2(x) \cdot \sin(x): sin3(x)cos5(x)dx=sin2(x)cos5(x)sin(x)dx.\int \sin^3(x) \cos^5(x) \, dx = \int \sin^2(x) \cos^5(x) \sin(x) \, dx.

Step 2: Use a Pythagorean Identity

Since sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x), substitute sin2(x)\sin^2(x) as follows: =(1cos2(x))cos5(x)sin(x)dx.= \int (1 - \cos^2(x)) \cos^5(x) \sin(x) \, dx.

Step 3: Substitute u=cos(x)u = \cos(x)

Let u=cos(x)u = \cos(x). Then, du=sin(x)dxdu = -\sin(x) \, dx, or equivalently, du=sin(x)dx-du = \sin(x) \, dx.

Substitute uu and du-du into the integral: =(1u2)u5(du).= \int (1 - u^2) u^5 \cdot (-du).

This simplifies to: =(u5u7)(du).= \int (u^5 - u^7) \, (-du).

Step 4: Distribute the Negative Sign

Rewrite as: =(u5+u7)du.= \int (-u^5 + u^7) \, du.

Step 5: Integrate Term by Term

Now integrate each term with respect to uu: =u66+u88+C.= -\frac{u^6}{6} + \frac{u^8}{8} + C.

Step 6: Substitute Back u=cos(x)u = \cos(x)

Replace uu with cos(x)\cos(x): =cos6(x)6+cos8(x)8+C.= -\frac{\cos^6(x)}{6} + \frac{\cos^8(x)}{8} + C.

Final Answer

sin3(x)cos5(x)dx=cos6(x)6+cos8(x)8+C.\int \sin^3(x) \cos^5(x) \, dx = -\frac{\cos^6(x)}{6} + \frac{\cos^8(x)}{8} + C.

Would you like further details, or do you have any questions?

Related Questions

  1. How would you integrate sin5(x)cos3(x)dx\int \sin^5(x) \cos^3(x) \, dx using a similar technique?
  2. What happens if both sine and cosine powers are even, e.g., sin4(x)cos4(x)dx\int \sin^4(x) \cos^4(x) \, dx?
  3. Can we solve sin3(x)cos3(x)dx\int \sin^3(x) \cos^3(x) \, dx using trigonometric identities?
  4. How can we solve integrals involving higher powers, like sin7(x)cos9(x)dx\int \sin^7(x) \cos^9(x) \, dx?
  5. What is the general form for integrating sinm(x)cosn(x)dx\int \sin^m(x) \cos^n(x) \, dx for arbitrary mm and nn?

Tip

For integrals involving products of sin\sin and cos\cos raised to odd powers, using trigonometric identities and substitution is often the most efficient method.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Integration
Substitution
Trigonometric Identities

Formulas

sin^2(x) = 1 - cos^2(x)
u = cos(x), du = -sin(x) dx

Theorems

Integration by Substitution
Pythagorean Identity

Suitable Grade Level

Undergraduate Calculus