Math Problem Statement

integrate sin^(5)3xcos3x

Solution

To integrate sin5(3x)cos(3x)\sin^5(3x) \cos(3x), we can use a substitution method and the fact that the sine and cosine functions are related. Here's how:

  1. Substitute: Let u=sin(3x)u = \sin(3x), so that du=3cos(3x)dxdu = 3\cos(3x)dx, or du3=cos(3x)dx\frac{du}{3} = \cos(3x)dx.

  2. Rewrite the integral: The integral becomes: sin5(3x)cos(3x)dx=u5du3\int \sin^5(3x) \cos(3x) dx = \int u^5 \cdot \frac{du}{3} Simplify the constants: 13u5du\frac{1}{3} \int u^5 du

  3. Integrate: Now, integrate u5u^5: 13u66=u618\frac{1}{3} \cdot \frac{u^6}{6} = \frac{u^6}{18}

  4. Substitute back u=sin(3x)u = \sin(3x): (sin(3x))618+C\frac{(\sin(3x))^6}{18} + C

Thus, the integral is: sin5(3x)cos(3x)dx=sin6(3x)18+C\int \sin^5(3x) \cos(3x) dx = \frac{\sin^6(3x)}{18} + C

Do you want more details or have any questions?

Here are some related questions:

  1. How would you integrate sin3(3x)cos(3x)\sin^3(3x) \cos(3x)?
  2. What happens when you integrate cos5(3x)sin(3x)\cos^5(3x) \sin(3x)?
  3. Can you solve the integral sin7(3x)cos(3x)dx\sin^7(3x) \cos(3x) dx?
  4. How would you apply substitution to solve sin(3x)cos5(3x)dx\sin(3x) \cos^5(3x) dx?
  5. What is the integral of cos(3x)sin3(3x)dx\cos(3x) \sin^3(3x) dx?

Tip: When you see products of sine and cosine powers, substitution and using trigonometric identities often simplifies the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Integration
Substitution

Formulas

u = sin(3x), du = 3cos(3x)dx
Integral of u^5 is (u^6)/6

Theorems

Substitution Method

Suitable Grade Level

Grades 11-12 or Early College