Math Problem Statement

integrate sin^5 x * cos^4 x dx

Solution

To integrate sin5(x)cos4(x)dx\sin^5(x) \cdot \cos^4(x) \, dx, we can use the following approach:

Step 1: Express the sine and cosine powers in terms of sine and cosine functions

We will separate one sin(x)\sin(x) and one cos(x)\cos(x) from the original integral to make the substitution easier:

sin5(x)cos4(x)=sin4(x)sin(x)cos4(x)\sin^5(x) \cdot \cos^4(x) = \sin^4(x) \cdot \sin(x) \cdot \cos^4(x)

This can be written as:

sin4(x)cos4(x)sin(x)dx\sin^4(x) \cdot \cos^4(x) \cdot \sin(x) \, dx

Step 2: Use trigonometric identities

We can rewrite sin4(x)\sin^4(x) as (sin2(x))2(\sin^2(x))^2 and cos4(x)\cos^4(x) as (cos2(x))2(\cos^2(x))^2:

(sin2(x))2(cos2(x))2sin(x)dx(\sin^2(x))^2 \cdot (\cos^2(x))^2 \cdot \sin(x) \, dx

Now, recall that sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x). Let's make the substitution u=cos(x)u = \cos(x), so that du=sin(x)dxdu = -\sin(x) \, dx. The integral now becomes:

(1u2)2u4(du)\int (1 - u^2)^2 \cdot u^4 \cdot (-du)

Step 3: Simplify and expand the expression

Expanding (1u2)2(1 - u^2)^2 gives:

(1u2)2=12u2+u4(1 - u^2)^2 = 1 - 2u^2 + u^4

So the integral becomes:

(12u2+u4)u4du-\int (1 - 2u^2 + u^4) \cdot u^4 \, du

Expanding this:

(u42u6+u8)du-\int \left( u^4 - 2u^6 + u^8 \right) \, du

Step 4: Integrate term by term

Now integrate each term separately:

[u552u77+u99]+C-\left[ \frac{u^5}{5} - \frac{2u^7}{7} + \frac{u^9}{9} \right] + C

Finally, substitute back u=cos(x)u = \cos(x):

[ -\left[ \frac{\cos^5(x)}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Integrals
Substitution Method
Trigonometric Identities

Formulas

sin^2(x) = 1 - cos^2(x)
u = cos(x), du = -sin(x) dx
Integral of u^n: ∫u^n du = u^(n+1)/(n+1) + C

Theorems

Power Reduction Formula
Substitution Theorem

Suitable Grade Level

Grades 11-12