Math Problem Statement

Evaluate the following indefinite integrals: ( a ) ∫ c o s ^5 x d x ( b ) ∫ 4 s i n ^4 x d x

Solution

Let's evaluate the given indefinite integrals:

(a) cos5(x)dx\int \cos^5(x) \, dx

To solve cos5(x)dx\int \cos^5(x) \, dx, we can use the identity cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x) and a substitution method. Here’s the step-by-step solution:

  1. Rewrite cos5(x)\cos^5(x) as cos4(x)cos(x)\cos^4(x) \cdot \cos(x). cos5(x)dx=cos4(x)cos(x)dx\int \cos^5(x) \, dx = \int \cos^4(x) \cdot \cos(x) \, dx
  2. Express cos4(x)\cos^4(x) as (cos2(x))2(\cos^2(x))^2 and then apply the identity cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x): =(1sin2(x))2cos(x)dx= \int (1 - \sin^2(x))^2 \cdot \cos(x) \, dx
  3. Let u=sin(x)u = \sin(x), then du=cos(x)dxdu = \cos(x) \, dx. Substitute uu and dudu into the integral: =(1u2)2du= \int (1 - u^2)^2 \, du
  4. Expand (1u2)2(1 - u^2)^2: =(12u2+u4)du= \int (1 - 2u^2 + u^4) \, du
  5. Integrate each term separately: =1du2u2du+u4du= \int 1 \, du - 2 \int u^2 \, du + \int u^4 \, du
  6. Calculate each integral: =u2u33+u55+C= u - \frac{2u^3}{3} + \frac{u^5}{5} + C
  7. Substitute back u=sin(x)u = \sin(x): =sin(x)2sin3(x)3+sin5(x)5+C= \sin(x) - \frac{2 \sin^3(x)}{3} + \frac{\sin^5(x)}{5} + C

So, the answer for part (a) is: cos5(x)dx=sin(x)2sin3(x)3+sin5(x)5+C\int \cos^5(x) \, dx = \sin(x) - \frac{2 \sin^3(x)}{3} + \frac{\sin^5(x)}{5} + C


(b) 4sin4(x)dx\int 4 \sin^4(x) \, dx

To evaluate 4sin4(x)dx\int 4 \sin^4(x) \, dx, we can use the power-reduction formula.

  1. Use the power-reduction identity for sin2(x)\sin^2(x): sin2(x)=1cos(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2}

  2. Therefore, sin4(x)=(1cos(2x)2)2\sin^4(x) = \left(\frac{1 - \cos(2x)}{2}\right)^2. sin4(x)=14(12cos(2x)+cos2(2x))\sin^4(x) = \frac{1}{4}(1 - 2\cos(2x) + \cos^2(2x))

  3. Substitute this into the integral: 4sin4(x)dx=414(12cos(2x)+cos2(2x))dx\int 4 \sin^4(x) \, dx = \int 4 \cdot \frac{1}{4}(1 - 2\cos(2x) + \cos^2(2x)) \, dx Simplify by distributing 44: =(12cos(2x)+cos2(2x))dx= \int (1 - 2\cos(2x) + \cos^2(2x)) \, dx

  4. Now, split the integral: =1dx2cos(2x)dx+cos2(2x)dx= \int 1 \, dx - 2 \int \cos(2x) \, dx + \int \cos^2(2x) \, dx

  5. Integrate each term:

    • The first term is straightforward: 1dx=x\int 1 \, dx = x
    • For the second term, use cos(2x)dx=sin(2x)2\int \cos(2x) \, dx = \frac{\sin(2x)}{2}: 2cos(2x)dx=sin(2x)-2 \int \cos(2x) \, dx = -\sin(2x)
    • For the third term, use the power-reduction formula again for cos2(2x)\cos^2(2x): cos2(2x)=1+cos(4x)2\cos^2(2x) = \frac{1 + \cos(4x)}{2} Thus, cos2(2x)dx=1+cos(4x)2dx=x2+sin(4x)8\int \cos^2(2x) \, dx = \int \frac{1 + \cos(4x)}{2} \, dx = \frac{x}{2} + \frac{\sin(4x)}{8}
  6. Combine all the terms: =xsin(2x)+x2+sin(4x)8+C= x - \sin(2x) + \frac{x}{2} + \frac{\sin(4x)}{8} + C Simplify: =3x2sin(2x)+sin(4x)8+C= \frac{3x}{2} - \sin(2x) + \frac{\sin(4x)}{8} + C

So, the answer for part (b) is: 4sin4(x)dx=3x2sin(2x)+sin(4x)8+C\int 4 \sin^4(x) \, dx = \frac{3x}{2} - \sin(2x) + \frac{\sin(4x)}{8} + C


Would you like a further breakdown of any steps?


Related Questions:

  1. How can trigonometric identities help in simplifying integrals?
  2. What are the power-reduction formulas and when are they used in integration?
  3. How does the substitution method simplify complex trigonometric integrals?
  4. What are common applications of trigonometric integrals in physics?
  5. How can you determine if a trigonometric integral requires substitution or another technique?

Tip: When dealing with powers of sine and cosine in integrals, look for ways to express even powers in terms of half-angles to simplify the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Indefinite Integrals
Trigonometric Integrals
Substitution
Power Reduction

Formulas

∫ cos^n(x) dx = use substitution or reduction formulas
∫ sin^2(x) dx = (1 - cos(2x))/2
∫ cos^2(x) dx = (1 + cos(2x))/2

Theorems

Substitution Method
Power Reduction Formulas

Suitable Grade Level

Grades 11-12