Math Problem Statement

Evaluate the following integral using trigonometric substitution. Integral from nothing to nothing StartFraction x squared Over StartRoot 441 minus x squared EndRoot EndFraction dx Question content area bottom Part 1 What substitution will be the most helpful for evaluating this​ integral? A. xequals21 sine theta Your answer is correct.B. xequals21 secant theta C. xequals21 tangent theta Part 2 Rewrite the given integral using this substitution.   Integral from nothing to nothing StartFraction x squared Over StartRoot 441 minus x squared EndRoot EndFraction dx equalsIntegral from nothing to nothing left parenthesis 441 left parenthesis StartFraction 1 minus cosine left parenthesis 2 theta right parenthesis Over 2 EndFraction right parenthesis right parenthesis d theta    ​(Type an exact​ answer.) Part 3 Evaluate the integral.

Solution

To solve the given integral:

x2441x2dx\int \frac{x^2}{\sqrt{441 - x^2}} \, dx

we will use trigonometric substitution to simplify it.

Part 1: Choosing the appropriate substitution

We are given three options:

  • x=21sinθx = 21 \sin \theta
  • x=21secθx = 21 \sec \theta
  • x=21tanθx = 21 \tan \theta

Since the integrand involves a square root of the form a2x2\sqrt{a^2 - x^2} (where a=21a = 21), the appropriate substitution is:

x=21sinθx = 21 \sin \theta

This substitution is correct because it simplifies the radical 441x2\sqrt{441 - x^2} by using the identity 1sin2θ=cos2θ1 - \sin^2 \theta = \cos^2 \theta.

Part 2: Rewrite the integral using the substitution

Given x=21sinθx = 21 \sin \theta, we can differentiate to find:

dx=21cosθdθdx = 21 \cos \theta \, d\theta

Now substitute x=21sinθx = 21 \sin \theta into the integral:

  1. The expression 441x2\sqrt{441 - x^2} becomes: 441x2=441441sin2θ=441cos2θ=21cosθ\sqrt{441 - x^2} = \sqrt{441 - 441 \sin^2 \theta} = \sqrt{441 \cos^2 \theta} = 21 \cos \theta

  2. The expression x2x^2 becomes: x2=(21sinθ)2=441sin2θx^2 = (21 \sin \theta)^2 = 441 \sin^2 \theta

Thus, the integral transforms into:

441sin2θ21cosθ21cosθdθ\int \frac{441 \sin^2 \theta}{21 \cos \theta} \cdot 21 \cos \theta \, d\theta

Simplifying:

441sin2θdθ\int 441 \sin^2 \theta \, d\theta

Part 3: Evaluating the integral

To evaluate 441sin2θdθ\int 441 \sin^2 \theta \, d\theta, we use the identity:

sin2θ=1cos(2θ)2\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}

Substituting this into the integral:

441sin2θdθ=4411cos(2θ)2dθ\int 441 \sin^2 \theta \, d\theta = 441 \int \frac{1 - \cos(2\theta)}{2} \, d\theta

This simplifies to:

4412(1cos(2θ))dθ\frac{441}{2} \int (1 - \cos(2\theta)) \, d\theta

Now integrate each term:

4412(θsin(2θ)2)+C\frac{441}{2} \left( \theta - \frac{\sin(2\theta)}{2} \right) + C

Step 4: Back-substitution

Since x=21sinθx = 21 \sin \theta, we know:

sinθ=x21\sin \theta = \frac{x}{21}

Thus, θ=arcsin(x21)\theta = \arcsin\left(\frac{x}{21}\right).

Now substitute back in terms of xx:

4412(arcsin(x21)12sin(2arcsin(x21)))+C\frac{441}{2} \left( \arcsin\left(\frac{x}{21}\right) - \frac{1}{2} \sin\left(2\arcsin\left(\frac{x}{21}\right)\right) \right) + C

Using the identity sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta \cos\theta, and knowing that cosθ=1sin2θ=1x2441\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \frac{x^2}{441}}, we can simplify further. However, this expression represents the final answer in terms of xx.

Final Answer:

4412(arcsin(x21)x441x2441)+C\frac{441}{2} \left( \arcsin\left(\frac{x}{21}\right) - \frac{x\sqrt{441 - x^2}}{441} \right) + C

Would you like a deeper explanation of any step?

Here are five follow-up questions for further practice:

  1. What trigonometric substitution would you use for an integral of the form x2x2a2dx\int \frac{x^2}{\sqrt{x^2 - a^2}} \, dx?
  2. How would the integral change if the upper limit was 2121?
  3. Can you apply this method to an integral involving x2+a2\sqrt{x^2 + a^2}?
  4. How does trigonometric substitution simplify radicals like a2x2\sqrt{a^2 - x^2}?
  5. What are the geometric interpretations of the arcsine and cosine functions in this context?

Tip: When performing trigonometric substitutions, always check the form of the radical to pick the right trigonometric identity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Substitution
Integration

Formulas

Trigonometric identities
Integral formulas

Theorems

Pythagorean identity
Fundamental theorem of calculus

Suitable Grade Level

Undergraduate Calculus