Math Problem Statement

integrale^(2x)/e^(4x)+9

Solution

The integral of the function e2xe4x+9\frac{e^{2x}}{e^{4x} + 9} can be solved using substitution.

Step 1: Simplify the expression

The given expression can be simplified as: e2xe4x+9=e2x(e2x)2+9\frac{e^{2x}}{e^{4x} + 9} = \frac{e^{2x}}{(e^{2x})^2 + 9} Let u=e2xu = e^{2x}, so du=2e2xdxdu = 2e^{2x} dx, and dx=du2e2xdx = \frac{du}{2e^{2x}}.

Step 2: Substitute into the integral

This changes the integral into: e2xe4x+9dx=1u2+9du2\int \frac{e^{2x}}{e^{4x} + 9} dx = \int \frac{1}{u^2 + 9} \cdot \frac{du}{2}

Step 3: Solve the integral

The integral now becomes: 12duu2+9\frac{1}{2} \int \frac{du}{u^2 + 9} This is a standard integral, with the formula: duu2+a2=1aarctan(ua)\int \frac{du}{u^2 + a^2} = \frac{1}{a} \arctan \left( \frac{u}{a} \right) where a=3a = 3. Applying this formula, we get: 1213arctan(u3)+C=16arctan(e2x3)+C\frac{1}{2} \cdot \frac{1}{3} \arctan \left( \frac{u}{3} \right) + C = \frac{1}{6} \arctan \left( \frac{e^{2x}}{3} \right) + C

Final Answer:

e2xe4x+9dx=16arctan(e2x3)+C\int \frac{e^{2x}}{e^{4x} + 9} dx = \frac{1}{6} \arctan \left( \frac{e^{2x}}{3} \right) + C

Let me know if you would like more details on any part of the solution or have further questions.

Here are 5 related questions for further exploration:

  1. How would you approach ekxe2kx+cdx\int \frac{e^{kx}}{e^{2kx} + c} dx for different constants kk and cc?
  2. Can you solve exe2x+1dx\int \frac{e^x}{e^{2x} + 1} dx?
  3. How would you solve dxx2+a2\int \frac{dx}{x^2 + a^2}?
  4. What happens if the integral has limits, such as 01e2xe4x+9dx\int_0^1 \frac{e^{2x}}{e^{4x} + 9} dx?
  5. Can you derive the arctangent formula used for integration from first principles?

Tip: Whenever you're working with exponential terms, substitution is often a useful method to simplify the integrand.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method
Trigonometric Integrals

Formulas

Integral of 1 / (u^2 + a^2): ∫ du / (u^2 + a^2) = 1/a * arctan(u/a) + C
Substitution: u = e^(2x), du = 2e^(2x) dx

Theorems

Arctangent Integral Formula

Suitable Grade Level

Grades 11-12