Math Problem Statement

SOLVE INTEGRAL dx/1+sinx FROM pi/4 TO 3pi/4 BY WRITING SINX IN TERMS OF TAN BUT YOU SHOULD NOT CHANGE LIMITS THAT IT PUT VALUES IN THE FINAL RESULT AFTER RESUBSTITUTING

Solution

We are asked to solve the integral:

I=π43π4dx1+sinxI = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \sin x}

using the substitution sinx\sin x in terms of tan\tan, but without changing the limits, which we will reapply after resubstitution. Here's how to approach this:

Step 1: Substitution

We use the Weierstrass substitution, which is based on the half-angle identity: tan(x2)=t\tan\left(\frac{x}{2}\right) = t Thus, the following relations hold: sinx=2t1+t2,dx=2dt1+t2\sin x = \frac{2t}{1 + t^2}, \quad dx = \frac{2\, dt}{1 + t^2}

Step 2: Rewrite the integrand

Using these, the integral becomes:

I=dx1+sinx=2dt1+t21+2t1+t2I = \int \frac{dx}{1 + \sin x} = \int \frac{\frac{2\, dt}{1 + t^2}}{1 + \frac{2t}{1 + t^2}}

Simplify the denominator: 1+2t1+t2=(1+t2)+2t1+t2=1+2t+t21+t21 + \frac{2t}{1 + t^2} = \frac{(1 + t^2) + 2t}{1 + t^2} = \frac{1 + 2t + t^2}{1 + t^2}

Thus, the integral simplifies to:

I=2dt1+t21+2t+t21+t2=2dt1+2t+t2I = \int \frac{\frac{2\, dt}{1 + t^2}}{\frac{1 + 2t + t^2}{1 + t^2}} = \int \frac{2\, dt}{1 + 2t + t^2}

Step 3: Complete the square

We can simplify the denominator by completing the square:

1+2t+t2=(t+1)21 + 2t + t^2 = (t + 1)^2

So, the integral becomes:

I=2dt(t+1)2I = \int \frac{2\, dt}{(t + 1)^2}

Step 4: Solve the integral

The integral of 1(t+1)2\frac{1}{(t + 1)^2} is straightforward:

I=2(t+1)2dt=2t+1+CI = \int 2 \cdot (t + 1)^{-2}\, dt = -\frac{2}{t + 1} + C

Step 5: Back-substitution

Now, we substitute back t=tan(x2)t = \tan\left(\frac{x}{2}\right):

I=2tan(x2)+1I = -\frac{2}{\tan\left(\frac{x}{2}\right) + 1}

Step 6: Apply limits

Now, we apply the limits x=π4x = \frac{\pi}{4} to x=3π4x = \frac{3\pi}{4}.

  • For x=π4x = \frac{\pi}{4}, we have: tan(π4×12)=tan(π8)\tan\left(\frac{\pi}{4} \times \frac{1}{2}\right) = \tan\left(\frac{\pi}{8}\right)

  • For ( x = \frac{3\pi

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric substitution
Weierstrass substitution
Definite integrals

Formulas

Weierstrass substitution: tan(x/2) = t
sin(x) = 2t / (1 + t^2)
dx = 2 dt / (1 + t^2)

Theorems

Trigonometric identities
Substitution rule for integration

Suitable Grade Level

Undergraduate Calculus