Math Problem Statement

Solve the given initial value problem. Bold x prime​(t)equalsStart 2 By 2 Table 1st Row 1st Column 4 2nd Column 6 2nd Row 1st Column 6 2nd Column 4 EndTable x​(t), x​(0)equalsStart 2 By 1 Table 1st Row 1st Column 5 2nd Row 1st Column 1 EndTable

Question content area bottom Part 1 x​(t)equals    enter your response here

Solution

To solve the initial value problem:

x(t)=[4664]x(t),x(0)=[51]\mathbf{x}'(t) = \begin{bmatrix} 4 & 6 \\ 6 & 4 \end{bmatrix} \mathbf{x}(t), \quad \mathbf{x}(0) = \begin{bmatrix} 5 \\ 1 \end{bmatrix}

we'll follow these steps:

Step 1: Find Eigenvalues and Eigenvectors of the Matrix

  1. Set up the matrix: A=[4664]A = \begin{bmatrix} 4 & 6 \\ 6 & 4 \end{bmatrix}

  2. Determine the eigenvalues by solving the characteristic polynomial: det(AλI)=0\det(A - \lambda I) = 0

    For matrix AA, we have: det[4λ664λ]=(4λ)236=λ28λ20=0\det \begin{bmatrix} 4 - \lambda & 6 \\ 6 & 4 - \lambda \end{bmatrix} = (4 - \lambda)^2 - 36 = \lambda^2 - 8\lambda - 20 = 0

    Solving this quadratic equation: λ28λ20=0\lambda^2 - 8\lambda - 20 = 0 The eigenvalues are λ1=10\lambda_1 = 10 and λ2=2\lambda_2 = -2.

  3. Find eigenvectors for each eigenvalue:

    • For λ1=10\lambda_1 = 10: [6666]v=0v1=[11]\begin{bmatrix} -6 & 6 \\ 6 & -6 \end{bmatrix} \mathbf{v} = 0 \Rightarrow \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
    • For λ2=2\lambda_2 = -2: [6666]v=0v2=[11]\begin{bmatrix} 6 & 6 \\ 6 & 6 \end{bmatrix} \mathbf{v} = 0 \Rightarrow \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}

Step 2: Write the General Solution

Using the eigenvalues and eigenvectors, the general solution to the system is: x(t)=c1e10t[11]+c2e2t[11]\mathbf{x}(t) = c_1 e^{10t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}

Step 3: Apply Initial Condition

Given x(0)=[51]\mathbf{x}(0) = \begin{bmatrix} 5 \\ 1 \end{bmatrix}, we can substitute t=0t = 0: x(0)=c1[11]+c2[11]=[51]\mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}

This gives us two equations:

  1. c1+c2=5c_1 + c_2 = 5
  2. c1c2=1c_1 - c_2 = 1

Solving these equations:

  • Adding them: 2c1=6c1=32c_1 = 6 \Rightarrow c_1 = 3
  • Substituting c1=3c_1 = 3 into the first equation: 3+c2=5c2=23 + c_2 = 5 \Rightarrow c_2 = 2

Step 4: Write the Solution

Substitute c1=3c_1 = 3 and c2=2c_2 = 2 back into the general solution: x(t)=3e10t[11]+2e2t[11]\mathbf{x}(t) = 3 e^{10t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 e^{-2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}

Expanding this, we get: x(t)=[3e10t+2e2t3e10t2e2t]\mathbf{x}(t) = \begin{bmatrix} 3 e^{10t} + 2 e^{-2t} \\ 3 e^{10t} - 2 e^{-2t} \end{bmatrix}

Final Answer

x(t)=[3e10t+2e2t3e10t2e2t]\mathbf{x}(t) = \begin{bmatrix} 3 e^{10t} + 2 e^{-2t} \\ 3 e^{10t} - 2 e^{-2t} \end{bmatrix}

Would you like more details on any part of this solution, or do you have further questions?


  1. What is the significance of eigenvalues in solving differential equations?
  2. How do eigenvectors influence the solution structure?
  3. Why do we use initial conditions to determine constants in the solution?
  4. How does matrix exponentiation relate to solutions of linear systems?
  5. How does this solution method apply to non-diagonalizable matrices?

Tip: When dealing with systems of differential equations, always check if the matrix is diagonalizable; it simplifies solving the system greatly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Linear Algebra
Eigenvalues and Eigenvectors

Formulas

Eigenvalue equation: det(A - λI) = 0
General solution: x(t) = c1 e^(λ1t)v1 + c2 e^(λ2t)v2

Theorems

Spectral Theorem
Initial Value Problem Theorem

Suitable Grade Level

Grades 11-12